
Huihui Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10490740/publications.pdf Version: 2024-02-01

Ниции 7ни

#	Article	IF	CITATIONS
1	Lowâ€Temperature, Nontoxic Waterâ€Induced Metalâ€Oxide Thin Films and Their Application in Thinâ€Film Transistors. Advanced Functional Materials, 2015, 25, 2564-2572.	7.8	161
2	Solution Processed Metal Oxide Highâ€Ĵº Dielectrics for Emerging Transistors and Circuits. Advanced Materials, 2018, 30, e1706364.	11.1	158
3	Perovskite and Conjugated Polymer Wrapped Semiconducting Carbon Nanotube Hybrid Films for High-Performance Transistors and Phototransistors. ACS Nano, 2019, 13, 3971-3981.	7.3	151
4	Waterâ€Induced Scandium Oxide Dielectric for Lowâ€Operating Voltage n―and pâ€Type Metalâ€Oxide Thinâ€I Transistors. Advanced Functional Materials, 2015, 25, 7180-7188.	Film 7.8	147
5	Solution Combustion Synthesis: Lowâ€Temperature Processing for pâ€Type Cu:NiO Thin Films for Transparent Electronics. Advanced Materials, 2017, 29, 1701599.	11.1	145
6	Printable Semiconductors for Backplane TFTs of Flexible OLED Displays. Advanced Functional Materials, 2020, 30, 1904588.	7.8	136
7	Roomâ€Temperature Solutionâ€Synthesized pâ€Type Copper(I) Iodide Semiconductors for Transparent Thinâ€Film Transistors and Complementary Electronics. Advanced Materials, 2018, 30, e1802379.	11.1	125
8	Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric. Applied Physics Letters, 2016, 108, .	1.5	122
9	High-performance inorganic metal halide perovskite transistors. Nature Electronics, 2022, 5, 78-83.	13.1	121
10	High-performance p-channel transistors with transparent Zn doped-Cul. Nature Communications, 2020, 11, 4309.	5.8	94
11	Highâ€Performance and Reliable Leadâ€Free Layeredâ€Perovskite Transistors. Advanced Materials, 2020, 32, e2002717.	11.1	86
12	High-mobility p-type NiO _x thin-film transistors processed at low temperatures with Al ₂ O ₃ high-k dielectric. Journal of Materials Chemistry C, 2016, 4, 9438-9444.	2.7	82
13	Solution-processed inorganic p-channel transistors: Recent advances and perspectives. Materials Science and Engineering Reports, 2019, 135, 85-100.	14.8	74
14	Engineering Copper lodide (Cul) for Multifunctional pâ€Type Transparent Semiconductors and Conductors. Advanced Science, 2021, 8, 2100546.	5.6	74
15	In situ one-step synthesis of p-type copper oxide for low-temperature, solution-processed thin-film transistors. Journal of Materials Chemistry C, 2017, 5, 2524-2530.	2.7	70
16	Redox Chloride Elimination Reaction: Facile Solution Route for Indiumâ€Free, Lowâ€Voltage, and Highâ€Performance Transistors. Advanced Electronic Materials, 2017, 3, 1600513.	2.6	66
17	Eco-friendly water-induced aluminum oxide dielectrics and their application in a hybrid metal oxide/polymer TFT. RSC Advances, 2015, 5, 86606-86613.	1.7	65
18	Graphene nanodots-encaged porous gold electrode fabricated via ion beam sputtering deposition for electrochemical analysis of heavy metal ions. Sensors and Actuators B: Chemical, 2015, 206, 592-600.	4.0	58

Ниїниї Zни

#	Article	IF	CITATIONS
19	One-step preparation of graphene nanosheets via ball milling of graphite and the application in lithium-ion batteries. Journal of Materials Science, 2016, 51, 3675-3683.	1.7	58
20	Sorption of 3,6-dibromocarbazole and 1,3,6,8-tetrabromocarbazole by microplastics. Marine Pollution Bulletin, 2019, 138, 458-463.	2.3	53
21	High-performance hysteresis-free perovskite transistors through anion engineering. Nature Communications, 2022, 13, 1741.	5.8	51
22	A water-induced high-k yttrium oxide dielectric for fully-solution-processed oxide thin-film transistors. Current Applied Physics, 2015, 15, S75-S81.	1.1	47
23	One-step synthesis of graphene quantum dots from defective CVD graphene and their application in IGZO UV thin film phototransistor. Carbon, 2016, 100, 201-207.	5.4	47
24	Electrospun <i>p</i> -Type Nickel Oxide Semiconducting Nanowires for Low-Voltage Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 25841-25849.	4.0	47
25	Eco-friendly, solution-processed In-W-O thin films and their applications in low-voltage, high-performance transistors. Journal of Materials Chemistry C, 2016, 4, 4478-4484.	2.7	45
26	Solutionâ€Processed Alkaline Lithium Oxide Dielectrics for Applications in n―and pâ€Type Thinâ€Film Transistors. Advanced Electronic Materials, 2016, 2, 1600140.	2.6	45
27	Polyol Reduction: A Low-Temperature Eco-Friendly Solution Process for p-Channel Copper Oxide-Based Transistors and Inverter Circuits. ACS Applied Materials & Interfaces, 2019, 11, 33157-33164.	4.0	37
28	Electrospun p-type CuO nanofibers for low-voltage field-effect transistors. Applied Physics Letters, 2017, 111, .	1.5	31
29	Distribution and ecotoxicological effects of polyhalogenated carbazoles in sediments from Jiaozhou Bay wetland. Marine Pollution Bulletin, 2019, 146, 393-398.	2.3	31
30	High-Performance Layered Perovskite Transistors and Phototransistors by Binary Solvent Engineering. Chemistry of Materials, 2021, 33, 1174-1181.	3.2	29
31	Effect of Monovalent Metal Iodide Additives on the Optoelectric Properties of Two-Dimensional Sn-Based Perovskite Films. Chemistry of Materials, 2021, 33, 2498-2505.	3.2	28
32	Graphene nanodots encaged 3-D gold substrate as enzyme loading platform for the fabrication of high performance biosensors. Sensors and Actuators B: Chemical, 2015, 220, 1186-1195.	4.0	27
33	Sorption of Tonalide, Musk Xylene, Galaxolide, and Musk Ketone by microplastics of polyethylene and polyvinyl chloride. Marine Pollution Bulletin, 2019, 144, 129-133.	2.3	27
34	Molecule Charge Transfer Doping for pâ€Channel Solutionâ€Processed Copper Oxide Transistors. Advanced Functional Materials, 2020, 30, 2002625.	7.8	26
35	Transparent Inorganic Copper Bromide (CuBr) p-Channel Transistors Synthesized From Solution at Room Temperature. IEEE Electron Device Letters, 2019, 40, 769-772.	2.2	22
36	Molecular Doping Enabling Mobility Boosting of 2D Sn ²⁺ â€Based Perovskites. Advanced Functional Materials, 2022, 32, .	7.8	18

Ниїниї Zни

#	Article	IF	CITATIONS
37	Key Roles of Trace Oxygen Treatment for Highâ€Performance Znâ€Doped Cul pâ€Channel Transistors. Advanced Electronic Materials, 2021, 7, .	2.6	17
38	Modulation of vacancy-ordered double perovskite Cs2SnI6 for air-stable thin-film transistors. Cell Reports Physical Science, 2022, 3, 100812.	2.8	17
39	Direct transfer of graphene and application in low-voltage hybrid transistors. RSC Advances, 2017, 7, 2172-2179.	1.7	16
40	Recent progress on metal halide perovskite field-effect transistors. Journal of Information Display, 2021, 22, 257-268.	2.1	16
41	Wafer-scale fabrication of a Cu/graphene double-nanocap array for surface-enhanced Raman scattering substrates. Chemical Communications, 2017, 53, 3273-3276.	2.2	14
42	Sodium Incorporation for Enhanced Performance of Two-Dimensional Sn-Based Perovskite Transistors. ACS Applied Materials & Interfaces, 2022, 14, 9363-9367.	4.0	14
43	Draw Spinning of Waferâ€Scale Oxide Fibers for Electronic Devices. Advanced Electronic Materials, 2018, 4, 1700644.	2.6	13
44	Quantifying the Tunable Conjugated Area of Graphene Oxide by Using Pyrene as a Fluorescent Probe. Chemistry - A European Journal, 2016, 22, 18881-18886.	1.7	6
45	Impact of Humidity on the Performance and Stability of Solution-Processed Copper Oxide Transistors. IEEE Electron Device Letters, 2020, , 1-1.	2.2	6
46	22.1: <i>Invited Paper:</i> Solution processable pâ€type metal halide semiconductors for high performance transparent pâ€channel thinâ€film transistors. Digest of Technical Papers SID International Symposium, 2019, 50, 215-215.	0.1	0
47	8â€4: Invited Paper: Transparent Zn Dopedâ€Cul for Highâ€Performance pâ€Channel Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2021, 52, 89-91.	0.1	0
48	Pâ€17: Lowâ€Temperature, Solutionâ€Processed Inorganic pâ€Channel Cuâ€based Thinâ€Film Transistors and Circuits. Digest of Technical Papers SID International Symposium, 2020, 51, 1372-1374.	0.1	0