Jormay Lim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1048855/publications.pdf

Version: 2024-02-01

430874 395702 2,628 33 18 33 h-index citations g-index papers 35 35 35 3410 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dynamic Pressure Stimulation Upregulates Collagen II and Aggrecan in Nucleus Pulposus Cells Through Calcium Signaling. Spine, 2022, 47, 1111-1119.	2.0	6
2	Auditory independent low-intensity ultrasound stimulation of mouse brain is associated with neuronal ERK phosphorylation and an increase of Tbr2 marked neuroprogenitors. Biochemical and Biophysical Research Communications, 2022, 613, 113-119.	2.1	4
3	Piezoelectric effect stimulates the rearrangement of chondrogenic cells and alters ciliary orientation via atypical PKCζ. Biochemistry and Biophysics Reports, 2022, 30, 101265.	1.3	2
4	Low intensity ultrasound enhances cisplatin uptake <i>in vitro</i> by cochlear hair cells. JASA Express Letters, 2021, 1, .	1.1	2
5	Elevation of Intra-Cellular Calcium in Nucleus Pulposus Cells with Micro-Pipette-Guided Ultrasound. Ultrasound in Medicine and Biology, 2021, 47, 1775-1784.	1.5	12
6	ASIC1a is required for neuronal activation via low-intensity ultrasound stimulation in mouse brain. ELife, $2021,10,$.	6.0	17
7	The responses of nucleus pulposus cells to pressure and ultrasound stimulation. Journal of the Acoustical Society of America, 2020, 148, EL314-EL319.	1.1	3
8	Editorial: Phosphorylation-Dependent Peptidyl-Prolyl Cis/Trans Isomerase PIN1. Frontiers in Cell and Developmental Biology, 2020, 8, 620418.	3.7	1
9	Piezoelectric stimulation by ultrasound facilitates chondrogenesis of mesenchymal stem cells. Journal of the Acoustical Society of America, 2020, 148, EL58-EL64.	1.1	14
10	Primary cilia control cell alignment and patterning in bone development via ceramide-PKCζ-β-catenin signaling. Communications Biology, 2020, 3, 45.	4.4	28
11	Low Intensity Ultrasound Induces Epithelial Cell Adhesion Responses. Journal of Biomechanical Engineering, 2020, 142, .	1.3	6
12	Design of an ultrasound chamber for cellular excitation and observation. Journal of the Acoustical Society of America, 2019, 145, EL547-EL553.	1.1	10
13	Regulator of G Protein Signaling Protein 12 (Rgs12) Controls Mouse Osteoblast Differentiation via Calcium Channel/Oscillation and Gl±i-ERK Signaling. Journal of Bone and Mineral Research, 2019, 34, 752-764.	2.8	19
14	Epithelial-mesenchymal transitions: insights from development. Development (Cambridge), 2012, 139, 3471-3486.	2.5	582
15	Alternative Path to EMT: Regulation of Apicobasal Polarity in Drosophila. Developmental Cell, 2011, 21, 983-984.	7.0	9
16	Target cell movement in tumor and cardiovascular diseases based on the epithelial–mesenchymal transition concept. Advanced Drug Delivery Reviews, 2011, 63, 558-567.	13.7	38
17	Essential role of Pin1 in the regulation of TRF1 stability and telomere maintenance. Nature Cell Biology, 2009, 11, 97-105.	10.3	104
18	Pin1 has opposite effects on wild-type and P301L tau stability and tauopathy. Journal of Clinical Investigation, 2008, 118, 1877-89.	8.2	96

#	Article	IF	CITATIONS
19	Pin1 in Alzheimer's disease: Multiple substrates, one regulatory mechanism?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 422-429.	3.8	83
20	The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid- \hat{l}^2 production. Nature, 2006, 440, 528-534.	27.8	444
21	Pin1 Regulates Centrosome Duplication, and Its Overexpression Induces Centrosome Amplification, Chromosome Instability, and Oncogenesis. Molecular and Cellular Biology, 2006, 26, 1463-1479.	2.3	108
22	Pinning down phosphorylated tau and tauopathies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 311-322.	3.8	59
23	Sprouty: how does the branch manager work?. Journal of Cell Science, 2003, 116, 3061-3068.	2.0	85
24	Tyrosine Phosphorylation of Sprouty2 Enhances Its Interaction with c-Cbl and Is Crucial for Its Function. Journal of Biological Chemistry, 2003, 278, 33456-33464.	3.4	116
25	The Cysteine-Rich Sprouty Translocation Domain Targets Mitogen-Activated Protein Kinase Inhibitory Proteins to Phosphatidylinositol 4,5-Bisphosphate in Plasma Membranes. Molecular and Cellular Biology, 2002, 22, 7953-7966.	2.3	74
26	Sprouty2 Inhibits the Ras/MAP Kinase Pathway by Inhibiting the Activation of Raf. Journal of Biological Chemistry, 2002, 277, 3195-3201.	3.4	196
27	Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO Journal, 2002, 21, 4796-4808.	7.8	209
28	Evidence for Direct Interaction between Sprouty and Cbl. Journal of Biological Chemistry, 2001, 276, 5866-5875.	3.4	114
29	Sprouty Proteins Are Targeted to Membrane Ruffles upon Growth Factor Receptor Tyrosine Kinase Activation. Journal of Biological Chemistry, 2000, 275, 32837-32845.	3.4	90
30	Structural characterization and transcriptional pattern of two types of carp rhodopsin gene. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 125, 37-45.	1.6	5
31	Tyrosine Phosphorylation of the Bcl-2-associated Protein BNIP-2 by Fibroblast Growth Factor Receptor-1 Prevents Its Binding to Cdc42GAP and Cdc42. Journal of Biological Chemistry, 1999, 274, 33123-33130.	3.4	42
32	Association of Atypical Protein Kinase C Isotypes with the Docker Protein FRS2 in Fibroblast Growth Factor Signaling. Journal of Biological Chemistry, 1999, 274, 19025-19034.	3.4	31
33	A second type of rod opsin cDNA from the common carp (Cyprinus carpio). Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1352, 8-12.	2.4	15