Dursun Saraydin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1048838/publications.pdf Version: 2024-02-01

ΠΗΡΟΗΝ ΟΛΟΛΛΟΙΝ

#	Article	IF	CITATIONS
1	Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels. European Polymer Journal, 2002, 38, 2133-2141.	2.6	195
2	A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes. Radiation Physics and Chemistry, 1999, 56, 381-386.	1.4	130
3	In vitro swelling studies and preliminary biocompatibility evaluation of acrylamide-based hydrogels. Biomaterials, 1996, 17, 67-70.	5.7	121
4	Radiation Induced Superabsorbent Hydrogels. Acrylamide/Itaconic Acid Copolymers. Macromolecular Materials and Engineering, 2001, 286, 34-42.	1.7	102
5	Behaviors of Acrylamide/Itaconic Acid Hydrogels in Uptake of Uranyl Ions from Aqueous Solutions. Separation Science and Technology, 1995, 30, 3747-3760.	1.3	98
6	Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses. Polymers for Advanced Technologies, 2000, 11, 59-68.	1.6	92
7	Acrylamide/maleic acid hydrogels. Polymers for Advanced Technologies, 1995, 6, 719-726.	1.6	84
8	Adsorption of methyl violet in aqueous solutions by poly(acrylamide-co-acrylic acid) hydrogels. Radiation Physics and Chemistry, 2003, 66, 117-127.	1.4	82
9	Adsorptions of Some Heavy Metal Ions in Aqueous Solutions by Acrylamide/Maleic Acid Hydrogels. Separation Science and Technology, 1995, 30, 3287-3298.	1.3	81
10	Preparation of Cu(II) adsorbed chitosan beads for catalase immobilization. Food Chemistry, 2009, 114, 962-969.	4.2	79
11	Swelling studies of super water retainer acrylamide/crotonic acid hydrogels crosslinked by trimethylolpropane triacrylate and 1,4-butanediol dimethacrylate. Polymer Bulletin, 2002, 48, 299-307.	1.7	76
12	Poly(Acrylamide-Sepiolite) Composite Hydrogels: Preparation, Swelling and Dye Adsorption Properties. Polymer Bulletin, 2006, 57, 231-241.	1.7	72
13	The Influence of Preparation Methods on the Swelling and Network Properties of Acrylamide Hydrogels with Crosslinkers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 419-431.	1.2	68
14	Adsorption of bovine serum albumin onto acrylamid—maleic acid hydrogels. Biomaterials, 1994, 15, 917-920.	5.7	62
15	Swelling and dye adsorption properties of radiation induced N -vinyl-2-pyrrolidone/acrylonitrile hydrogels. Polymer Bulletin, 1998, 41, 371-378.	1.7	61
16	Synthesis, Characterization and Evaluation of IPN Hydrogels for Antibiotic Release. Drug Delivery, 2004, 11, 381-388.	2.5	59
17	Interpenetrating polymeric network hydrogels for potential gastrointestinal drug release. Polymer International, 2007, 56, 1371-1377.	1.6	58
18	Interaction of some cationic dyes with acrylamide/itaconic acid hydrogels. Journal of Applied Polymer Science, 1996, 61, 2367-2372.	1.3	55

#	Article	IF	CITATIONS
19	Water uptake in chemically crosslinked poly(acrylamide-co-crotonic acid) hydrogels. Materials & Design, 2005, 26, 265-270.	5.1	52
20	Adsorption of bovine serum albumin to acrylamide–itaconic acid hydrogels. Polymers for Advanced Technologies, 1994, 5, 664-668.	1.6	51
21	Use of superswelling acrylamide/maleic acid hydrogels for monovalent cationic dye adsorption. Journal of Applied Polymer Science, 2001, 79, 1809-1815.	1.3	51
22	Uranyl ion binding properties of poly(hydroxamic acid) hydrogels. Polymer Bulletin, 2001, 47, 81-89.	1.7	48
23	The releases of agrochemicals from radiation induced acrylamide/crotonic acid hydrogels. Polymer Bulletin, 1998, 41, 577-584.	1.7	45
24	Immobilization of catalase onto chitosan and cibacron blue F3GA attached chitosan beads. Enzyme and Microbial Technology, 2007, 41, 447-454.	1.6	43
25	Water absorbency studies of γ-radiation crosslinked poly(acrylamide-co-2,3-dihydroxybutanedioic acid) hydrogels. Nuclear Instruments & Methods in Physics Research B, 2004, 225, 489-496.	0.6	41
26	Dynamic swelling behavior of γ-radiation induced polyelectrolyte poly(AAm-co-CA) hydrogels in urea solutions. International Journal of Pharmaceutics, 2005, 301, 102-111.	2.6	41
27	Adsorption of Some Basic Dyes by Acrylamide-Maleic Acid Hydrogels. Separation Science and Technology, 1996, 31, 423-434.	1.3	40
28	RADIATION INDUCED ACRYLAMIDE/CITRIC ACID HYDROGELS AND THEIR SWELLING BEHAVIORS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 1105-1121.	1.2	40
29	In vitro dynamic swelling behaviors of polyhydroxamic acid hydrogels in the simulated physiological body fluids. Polymer Bulletin, 2001, 46, 91-98.	1.7	38
30	Nicotine-selective radiation-induced poly(acrylamide/maleic acid) hydrogels. Radiation Physics and Chemistry, 2001, 60, 203-210.	1.4	37
31	Relationship between the swelling process and the releases of water soluble agrochemicals from radiation crosslinked acrylamide/itaconic acid copolymers. Polymer Bulletin, 2000, 45, 287-294.	1.7	35
32	Immobilization of Saccharomyces cerevisiae on to acrylamide–sodium acrylate hydrogels for production of ethyl alcohol. Enzyme and Microbial Technology, 2003, 32, 114-119.	1.6	35
33	Preparation of acrylamide/maleic acid hydrogels and their biocompatibility with some biochemical parameters of human serum. Radiation Physics and Chemistry, 1995, 46, 1049-1052.	1.4	32
34	Super Water-Retainer Hydrogels: Crosslinked Acrylamide/Succinic Acid Copolymers. Polymer Journal, 1997, 29, 631-636.	1.3	29
35	In vivo biocompatibility of radiation crosslinked acrylamide copolymers. Nuclear Instruments & Methods in Physics Research B, 2004, 217, 281-292.	0.6	29
36	Cationic dye adsorption by acrylamide/itaconic acid hydrogels in aqueous solutions. Polymers for Advanced Technologies, 1997, 8, 574-578.	1.6	26

3

#	Article	IF	CITATIONS
37	Influence of Some Amino Acids on the Dynamic Swelling Behavior of Radiation-Induced Acrylamide Hydrogel. Applied Biochemistry and Biotechnology, 1999, 82, 115-126.	1.4	26
38	Environmentally sensitive hydrogels: Nâ€isopropyl acrylamide/Acrylamide/ Monoâ€; Diâ€; Tricarboxylic acid crosslinked polymers. Polymer Engineering and Science, 2015, 55, 843-851.	1.5	26
39	Swelling characterization of gamma-radiation induced crosslinked acrylamide/maleic acid hydrogels in urea solutions. Materials & Design, 2006, 27, 576-584.	5.1	25
40	The Removal of Textile Dyes with Cross-Linked Chitosan-Poly(acrylamide) Adsorbent Hydrogels. Polymer-Plastics Technology and Engineering, 2011, 50, 1247-1255.	1.9	25
41	In vitro dynamic swelling behaviors of radiation synthesized polyacrylamide with crosslinkers in the simulated physiological body fluids. Nuclear Instruments & Methods in Physics Research B, 2002, 187, 340-344.	0.6	24
42	Polyelectrolyte CASA hydrogels for uptake of uranyl ions from aqueous solutions. Journal of Applied Polymer Science, 2007, 104, 200-204.	1.3	24
43	A Study on the Correlation Between Adsorption and Swelling for Poly(Hydroxamic Acid) Hydrogels-Triarylmethane Dyes Systems. Journal of Polymers and the Environment, 2018, 26, 3924-3936.	2.4	23
44	In vivo biocompatibility of radiation induced acrylamide and acrylamide/maleic acid hydrogels. Journal of Materials Science, 2001, 36, 2473-2481.	1.7	21
45	Adsorption of Some Textile Dyes onto Crosslinked Poly(N-Vinylpyrrolidone). Adsorption Science and Technology, 2003, 21, 651-659.	1.5	20
46	Interaction of nicotine and its pharmaceutical derivatives with acrylamide/itaconic acid hydrogels. Journal of Applied Polymer Science, 1997, 66, 733-739.	1.3	19
47	The use of immobilized Saccharomyces cerevisiae on radiation crosslinked acrylamide–maleic acid hydrogel carriers for production of ethyl alcohol. Process Biochemistry, 2002, 37, 1351-1357.	1.8	19
48	RADIATION CROSSLINKED POLY(ACRYLAMIDE/2-HYDROXYPROPYL METHACRYLATE/MALEIC ACID) AND THEIR USABILITY IN THE UPTAKE OF URANIUM. Journal of Macromolecular Science - Pure and Applied Chemistry, 2002, 39, 969-990.	1.2	18
49	Title is missing!. Journal of Materials Science, 2002, 37, 3217-3223.	1.7	18
50	Adsorption of BSA onto radiation-crosslinked poly (AAm/HPMA/MA) terpolymers. Polymer Bulletin, 2003, 50, 183-190.	1.7	18
51	Behaviors of Acrylamide/Maleic Acid Hydrogels in Uptake of Some Cationic Dyes from Aqueous Solutions. Separation Science and Technology, 1996, 31, 2359-2371.	1.3	17
52	Removal of some cationic dyes from aqueous solutions by acrylamide/itaconic acid hydrogels. Water, Air, and Soil Pollution, 1998, 106, 369-378.	1.1	17
53	Poly(hydroxamic acid) hydrogels from poly(acrylamide): preparation and characterization. Polymer Bulletin, 2001, 47, 71-79.	1.7	16
54	Full Factorial Design Approach to Hg(II) Adsorption onto Hydrogels. Arabian Journal for Science and Engineering, 2015, 40, 109-116.	1.1	16

#	Article	IF	CITATIONS
55	Radiation‧ynthesized Acrylamide/Crotonic Acid Hydrogels for Selective Mercury (<scp>II</scp>) Ion Adsorption. Advances in Polymer Technology, 2018, 37, 822-829.	0.8	15
56	Influence of some aromatic amino acids on the swelling behavior of acrylamide/maleic acid hydrogel. Polymer Bulletin, 1998, 40, 575-581.	1.7	14
57	pH-Sensitive Chitosan Films for Baker's Yeast Immobilization. Applied Biochemistry and Biotechnology, 2002, 101, 239-250.	1.4	14
58	Poly(acrylamide/maleic acid)–sepiolite composite hydrogels for immobilization of invertase. Polymer Bulletin, 2010, 64, 27-40.	1.7	14
59	Poly(acrylamide/vinylsulfonic acid) hydrogel for invertase immobilization. Microscopy Research and Technique, 2020, 83, 1487-1498.	1.2	12
60	Binding of some dyes onto crosslinked poly (N-vinylpyrrolidone). Polymer Bulletin, 2000, 44, 501-508.	1.7	11
61	Immobilization of Saccharomyces cerevisiae on to radiation crosslinked HEMA/AAm hydrogels for production of ethyl alcohol. Process Biochemistry, 2002, 37, 651-657.	1.8	11
62	Acrylamide–Sepiolite Based Composite Hydrogels for Immobilization of Invertase. Journal of Food Science, 2009, 74, N45-9.	1.5	10
63	Swelling Characterization of Polyelectrolyte Poly(Hydroxamic Acid) Hydrogels in Aqueous Thiazin Dye Solutions. Polymer-Plastics Technology and Engineering, 2006, 45, 729-734.	1.9	9
64	Adsorption of phenazine dyes using poly(hydroxamic acid) hydrogels from aqueous solutions. Polymer Engineering and Science, 2018, 58, 310-318.	1.5	8
65	Effects of diabetes on apoptosis and mitosis in rat hippocampus. Biotechnic and Histochemistry, 2021, 96, 460-467.	0.7	8
66	Smart Hydrogels: Preparation, Characterization, and Determination of Transition Points of Crosslinked N-Isopropyl Acrylamide/Acrylamide/Carboxylic Acids Polymers. Gels, 2021, 7, 113.	2.1	8
67	A study of digital image analysis on the acrylamide derivative monomers induced apoptosis in rat cerebrum. Microscopy Research and Technique, 2020, 83, 436-445.	1.2	7
68	Radiation-Induced Acrylamide/4-Vinyl Pyridine Biocidal Hydrogels: Synthesis, Characterization, and Antimicrobial Activities. Polymer-Plastics Technology and Engineering, 2017, 56, 1295-1306.	1.9	6
69	<i>In vitro</i> swelling studies in simulated physiological solutions and biocompatibility of NIPAM-based hydrogels with some biochemical parameters of human sera. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 452-457.	1.2	5
70	Influence of Concentrations of Methacrylate and Acrylate Monomers on the Properties of Fiber Reinforced Polymethyl Methacrylate Denture Base Materials. Acta Chemica Iasi, 2018, 26, 329-350.	0.1	5
71	Stimuli Responsive Hydrogels: NIPAM/AAm/Carboxylic Acid Polymers. Acta Chemica Iasi, 2019, 27, 155-184.	0.1	5
72	Calculations of the magnitude of responsivities in pH-, temperature- and ion- responsive hydrogels. Materials Today Communications, 2022, 31, 103253.	0.9	4

#	Article	IF	CITATIONS
73	Nanocomposite smart hydrogel based on sepiolite nanochannels/N-isopropyl acrylamide/itaconic acid/acrylamide for invertase immobilization. Polymer-Plastics Technology and Materials, 2021, 60, 25-36.	0.6	3
74	Kinetic investigation of some steroids by thermogravimetry. Journal of Thermal Analysis, 1990, 36, 733-742.	0.7	2
75	Adsorption of Bovine Serum Albumin onto Radiation-Crosslinked Poly(Acrylamide/Acrylic Acid). Adsorption Science and Technology, 2004, 22, 311-325.	1.5	2
76	The Effects of Monomers Used in Polymeric Biomaterials on Renal Tissue. International Journal of Morphology, 2017, 35, 1203-1208.	0.1	2
77	Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses. Polymers for Advanced Technologies, 2000, 11, 59-68.	1.6	2
78	Radiation Induced Superabsorbent Hydrogels. Acrylamide/Itaconic Acid Copolymers. Macromolecular Materials and Engineering, 2001, 286, 34-42.	1.7	2
79	The Properties of Immobilized Invertase Onto a New Support Material; Poly(Methacrylamide/Maleic) Tj ETQq1 1 C).784314 r 0.1	gBT /Overlo
80	A digital image analysis study on the disintegration kinetics of reticular fibers in the ethylene glycolâ€induced rat liver tissue. Microscopy Research and Technique, 2020, 83, 1585-1593.	1.2	1
81	Preparation and Characterization of Molecular Imprinted Polymer for the Selective Recognition of Serotonin. Chemistry and Chemical Technology, 2020, 14, 195-204.	0.2	1
82	Synthesis of New Molecular Imprinted Polymer for Highly Recognition of Cholic Acid. Acta Chemica Iasi, 2018, 26, 123-152.	0.1	0