Liang Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1048835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome―and transcriptomeâ€wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in <i>Brassica napus</i> . Plant Biotechnology Journal, 2022, 20, 211-225.	4.1	43
2	Oil plant genomes: current state of the science. Journal of Experimental Botany, 2022, 73, 2859-2874.	2.4	16
3	Salt‑responsive transcriptome analysis of canola roots reveals candidate genes involved in the key metabolic pathway in response to salt stress. Scientific Reports, 2022, 12, 1666.	1.6	10
4	CRISPR/Cas9-Targeted Mutagenesis of BnaFAE1 Genes Confers Low-Erucic Acid in Brassica napus. Frontiers in Plant Science, 2022, 13, 848723.	1.7	18
5	BnVIR: bridging the genotype-phenotype gap to accelerate mining of candidate variations underlying agronomic traits in Brassica napus. Molecular Plant, 2022, 15, 779-782.	3.9	13
6	The functions of phospholipases and their hydrolysis products in plant growth, development and stress responses. Progress in Lipid Research, 2022, 86, 101158.	5.3	52
7	Sunflower WRINKLED1 Plays a Key Role in Transcriptional Regulation of Oil Biosynthesis. International Journal of Molecular Sciences, 2022, 23, 3054.	1.8	10
8	Multi-omics analysis dissects the genetic architecture of seed coat content in Brassica napus. Genome Biology, 2022, 23, 86.	3.8	23
9	A reactive oxygen species burst causes haploid induction in maize. Molecular Plant, 2022, 15, 943-955.	3.9	39
10	Transcriptional regulation of oil biosynthesis in seed plants: Current understanding, applications, and perspectives. Plant Communications, 2022, 3, 100328.	3.6	39
11	Genome-Wide Association Studies of Salt-Alkali Tolerance at Seedling and Mature Stages in Brassica napus. Frontiers in Plant Science, 2022, 13, 857149.	1.7	5
12	High-throughput unmanned aerial vehicle-based phenotyping provides insights into the dynamic process and genetic basis of rapeseed waterlogging response in the field. Journal of Experimental Botany, 2022, 73, 5264-5278.	2.4	7
13	Brassica napus BnaNTT1 modulates ATP homeostasis in plastids to sustain metabolism and growth. Cell Reports, 2022, 40, 111060.	2.9	7
14	Longâ€read sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. Plant Biotechnology Journal, 2021, 19, 240-250.	4.1	45
15	BnPIR: <i>Brassica napus</i> panâ€genome information resource for 1689 accessions. Plant Biotechnology Journal, 2021, 19, 412-414.	4.1	51
16	Combining quantitative trait locus and co-expression analysis allowed identification of new candidates for oil accumulation in rapeseed. Journal of Experimental Botany, 2021, 72, 1649-1660.	2.4	12
17	Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus. Molecular Plant, 2021, 14, 470-487.	3.9	107
18	Nonspecific phospholipase C4 hydrolyzes phosphosphingolipids and sustains plant root growth during phosphate deficiency. Plant Cell, 2021, 33, 766-780.	3.1	31

LIANG GUO

#	Article	IF	CITATIONS
19	Genome-Wide Association Mapping Unravels the Genetic Control of Seed Vigor under Low-Temperature Conditions in Rapeseed (Brassica napus L.). Plants, 2021, 10, 426.	1.6	15
20	Transcriptome Analysis Reveals Genes of Flooding-Tolerant and Flooding-Sensitive Rapeseeds Differentially Respond to Flooding at the Germination Stage. Plants, 2021, 10, 693.	1.6	4
21	Acylation of nonâ€specific phospholipase C4 determines its function in plant response to phosphate deficiency. Plant Journal, 2021, 106, 1647-1659.	2.8	13
22	Crop height estimation based on UAV images: Methods, errors, and strategies. Computers and Electronics in Agriculture, 2021, 185, 106155.	3.7	40
23	DELLA proteins BnaA6.RGA and BnaC7.RGA negatively regulate fatty acid biosynthesis by interacting with BnaLEC1s in <i>Brassica napus</i> . Plant Biotechnology Journal, 2021, 19, 2011-2026.	4.1	15
24	BnTIR: an online transcriptome platform for exploring RNAâ€seq libraries for oil crop <i>Brassica napus</i> . Plant Biotechnology Journal, 2021, 19, 1895-1897.	4.1	68
25	Proteomeâ€wide identification of Sâ€sulphenylated cysteines in <scp><i>Brassica napus</i></scp> . Plant, Cell and Environment, 2021, 44, 3571-3582.	2.8	9
26	The Brassica napus fatty acid exporter FAX1-1 contributes to biological yield, seed oil content, and oil quality. Biotechnology for Biofuels, 2021, 14, 190.	6.2	15
27	Genome-Wide Association Studies of Salt Tolerance at Seed Germination and Seedling Stages in Brassica napus. Frontiers in Plant Science, 2021, 12, 772708.	1.7	20
28	Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis and hormone signalling in soybean (<i>Glycine max</i>). Plant Biotechnology Journal, 2020, 18, 155-171.	4.1	52
29	<i>Arabidopsis GDSL1</i> overexpression enhances rapeseed <i>Sclerotinia sclerotiorum</i> resistance and the functional identification of its homolog in <i>Brassica napus</i> . Plant Biotechnology Journal, 2020, 18, 1255-1270.	4.1	48
30	Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants, 2020, 6, 34-45.	4.7	449
31	Genome wide characterization of phospholipase A & C families and pattern of lysolipids and diacylglycerol changes under abiotic stresses in Brassica napus L. Plant Physiology and Biochemistry, 2020, 147, 101-112.	2.8	17
32	Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napus. Plant Journal, 2020, 104, 1410-1422.	2.8	21
33	An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Molecular Breeding, 2020, 40, 1.	1.0	43
34	TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR4 Interacts with WRINKLED1 to Mediate Seed Oil Biosynthesis. Plant Physiology, 2020, 184, 658-665.	2.3	29
35	Nuclear moonlighting of cytosolic glyceraldehyde-3-phosphate dehydrogenase regulates Arabidopsis response to heat stress. Nature Communications, 2020, 11, 3439.	5.8	48
36	The function of the WRI1-TCP4 regulatory module in lipid biosynthesis. Plant Signaling and Behavior, 2020, 15, 1812878.	1.2	6

Liang Guo

#	Article	IF	CITATIONS
37	Roles of the Brassica napus DELLA Protein BnaA6.RGA, in Modulating Drought Tolerance by Interacting With the ABA Signaling Component BnaA10.ABF2. Frontiers in Plant Science, 2020, 11, 577.	1.7	66
38	Nonspecific phospholipase C6 increases seed oil production in oilseed Brassicaceae plants. New Phytologist, 2020, 226, 1055-1073.	3.5	22
39	Involvement of abscisic acid, ABI5, and PPC2 in plant acclimation to low CO2. Journal of Experimental Botany, 2020, 71, 4093-4108.	2.4	13
40	The genome of jojoba (<i>Simmondsia chinensis</i>): A taxonomically isolated species that directs wax ester accumulation in its seeds. Science Advances, 2020, 6, eaay3240.	4.7	53
41	Molecular Basis of Plant Oil Biosynthesis: Insights Gained From Studying the WRINKLED1 Transcription Factor. Frontiers in Plant Science, 2020, 11, 24.	1.7	47
42	Heterogeneous Distribution of Erucic Acid in Brassica napus Seeds. Frontiers in Plant Science, 2020, 10, 1744.	1.7	12
43	Two Plastid Fatty Acid Exporters Contribute to Seed Oil Accumulation in Arabidopsis. Plant Physiology, 2020, 182, 1910-1919.	2.3	19
44	Genome-Wide Analysis of Phospholipase D Gene Family and Profiling of Phospholipids under Abiotic Stresses in Brassica napus. Plant and Cell Physiology, 2019, 60, 1556-1566.	1.5	39
45	Transcriptome analysis reveals genes commonly responding to multiple abiotic stresses in rapeseed. Molecular Breeding, 2019, 39, 1.	1.0	28
46	An efficient and comprehensive plant glycerolipids analysis approach based on highâ€performance liquid chromatography–quadrupole timeâ€ofâ€flight mass spectrometer. Plant Direct, 2019, 3, e00183.	0.8	26
47	Characterization of Fatty Acid EXporters involved in fatty acid transport for oil accumulation in the green alga Chlamydomonas reinhardtii. Biotechnology for Biofuels, 2019, 12, 14.	6.2	40
48	Transcriptional regulation of oil biosynthesis in different parts of Wanyou 20 (Brassica napus) seeds. Acta Agronomica Sinica(China), 2019, 45, 381.	0.1	0
49	Arabidopsis phospholipase Dα1 and Dδoppositely modulate EDS1- and SA-independent basal resistance against adapted powdery mildew. Journal of Experimental Botany, 2018, 69, 3675-3688.	2.4	23
50	Different effects of phospholipase Dζ2 and nonâ€specific phospholipase C4 on lipid remodeling and root hair growth in Arabidopsis response to phosphate deficiency. Plant Journal, 2018, 94, 315-326.	2.8	52
51	Strigolactones promote rhizobia interaction and increase nodulation in soybean (Glycine max). Microbial Pathogenesis, 2018, 114, 420-430.	1.3	41
52	Emerging Roles of Sphingolipid Signaling in Plant Response to Biotic and Abiotic Stresses. Molecular Plant, 2018, 11, 1328-1343.	3.9	87
53	<i>De novo</i> transcriptome sequencing and metabolite profiling analyses reveal the complex metabolic genes involved in the terpenoid biosynthesis in Blue Anise Sage (<i>Salvia guaranitica</i> L.). DNA Research, 2018, 25, 597-617.	1.5	41
54	Spatial analysis of lipid metabolites and expressed genes reveals tissueâ€specific heterogeneity of lipid metabolism in high―and lowâ€oil <i>Brassica napus</i> L. seeds. Plant Journal, 2018, 94, 915-932.	2.8	66

Liang Guo

#	Article	IF	CITATIONS
55	Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in <i>Arabidopsis</i> . Plant, Cell and Environment, 2017, 40, 2220-2235.	2.8	45
56	Phospholipase Dε enhances <i>Braasca napus</i> growth and seed production in response to nitrogen availability. Plant Biotechnology Journal, 2016, 14, 926-937.	4.1	35
57	Membrane glycerolipidome of soybean root hairs and its response to nitrogen and phosphate availability. Scientific Reports, 2016, 6, 36172.	1.6	16
58	Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Scientific Reports, 2016, 6, 19007.	1.6	126
59	Plant phospholipases D and C and their diverse functions in stress responses. Progress in Lipid Research, 2016, 62, 55-74.	5.3	288
60	Phosphatidic Acid Interacts with a MYB Transcription Factor and Regulates Its Nuclear Localization and Function in <i>Arabidopsis</i> Â Â. Plant Cell, 2014, 25, 5030-5042.	3.1	80
61	Cytosolic Phosphorylating Glyceraldehyde-3-Phosphate Dehydrogenases Affect <i>Arabidopsis</i> Cellular Metabolism and Promote Seed Oil Accumulation. Plant Cell, 2014, 26, 3023-3035.	3.1	80
62	PLD: Phospholipase Ds in Plant Signaling. Signaling and Communication in Plants, 2014, , 3-26.	0.5	22
63	Phosphatidic Acid Binds to Cytosolic Glyceraldehyde-3-phosphate Dehydrogenase and Promotes Its Cleavage in Arabidopsis. Journal of Biological Chemistry, 2013, 288, 11834-11844.	1.6	65
64	Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with Phospholipase Dδ to Transduce Hydrogen Peroxide Signals in the <i>Arabidopsis</i> Response to Stress. Plant Cell, 2012, 24, 2200-2212.	3.1	202
65	Crosstalk between Phospholipase D and Sphingosine Kinase in Plant Stress Signaling. Frontiers in Plant Science, 2012, 3, 51.	1.7	55
66	Connections between Sphingosine Kinase and Phospholipase D in the Abscisic Acid Signaling Pathway in Arabidopsis. Journal of Biological Chemistry, 2012, 287, 8286-8296.	1.6	99
67	Patatin-Related Phospholipase pPLAIIIβ-Induced Changes in Lipid Metabolism Alter Cellulose Content and Cell Elongation in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 1107-1123.	3.1	94
68	Phosphatidic Acid Binds and Stimulates Arabidopsis Sphingosine Kinases. Journal of Biological Chemistry, 2011, 286, 13336-13345.	1.6	109
69	Molecular Cloning, Characterization, and Expression of an ω-3 Fatty Acid Desaturase Gene from Sapium sebiferum. Journal of Bioscience and Bioengineering, 2008, 106, 375-380.	1.1	11
70	ISSR Analysis of the Genetic Diversity of the Endangered Species Sinopodophyllum hexandrum (Royle) Ying from Western Sichuan Province, China. Journal of Integrative Plant Biology, 2006, 48, 1140-1146.	4.1	28
71	AFLP Analysis of Genetic Diversity of the Endangered Species Sinopodophyllum hexandrum in the Tibetan Region of Sichuan Province, China. Biochemical Genetics, 2006, 44, 44-57.	0.8	19
72	Critical Roles of Mitochondrial Fatty Acid Synthesis in Tomato Development and Environmental Response. Plant Physiology, 0, , .	2.3	1

#	Article	IF	CITATIONS
73	Genetic and Biochemical Investigation of Seed Fatty Acid Accumulation in Arabidopsis. Frontiers in Plant Science, 0, 13, .	1.7	4