Xiao-Guang Bao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1048535/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic insights into nickel- and gold-catalyzed diastereoselective [4 + 2 + 1] cycloadditions between dienynes and diazo compounds: a DFT study. Organic Chemistry Frontiers, 2022, 9, 693-702.	4.5	6
2	Understanding diversified chemoseletivities in Rh2(II)-catalyzed intramolecular annulation reactions of diazo and N-Sulfonyl-1,2,3-triazole compounds: A DFT study. Molecular Catalysis, 2022, 517, 112047.	2.0	1
3	Facile preparation of dihydro-1,4-benzothiazine derivatives <i>via</i> oxidative ring-expansion of 2-aminobenzothiazoles with olefins. Chemical Communications, 2022, 58, 2216-2219.	4.1	5
4	Cycloaddition of di-substituted epoxides and CO ₂ under ambient conditions catalysed by rare-earth poly(phenolate) complexes. Inorganic Chemistry Frontiers, 2022, 9, 2969-2979.	6.0	11
5	Acyclic nitronate olefin cycloaddition (ANOC): regio- and stereospecific synthesis of isoxazolines. Chemical Science, 2021, 12, 774-779.	7.4	15
6	Mechanistic insights into the Rh(<scp>i</scp>)-catalyzed transannulation of 1,2,3-thiadiazoles with alkenes, alkynes, and nitriles: Does the intermediacy of α-thiavinyl Rh-carbenoids play an important role?. Organic Chemistry Frontiers, 2021, 8, 310-318.	4.5	16
7	Intramolecular Alder-ene cycloisomerization of cyclopropenes with alkenes to access spirocycles. Organic Chemistry Frontiers, 2021, 8, 4799-4804.	4.5	1
8	Silver-catalyzed desulfurizative annulation of 1,2-benzisothiazoles with ynamides to construct multi-substituted isoquinolines. Organic Chemistry Frontiers, 2021, 8, 5446-5453.	4.5	3
9	Nickel/Photoredox Dual Catalytic Cross-Coupling of Alkyl and Amidyl Radicals to Construct C(sp ³)–N Bonds. ACS Catalysis, 2021, 11, 5026-5034.	11.2	19
10	Understanding Mechanistic Differences between 3â€Diazoindolinâ€2â€Imines and N â€Sulfonyl â€1,2, 3â€Triaz the Rh 2 (II)â€Catalyzed Reactions with Nitrosoarenes. Chinese Journal of Chemistry, 2021, 39, 1565-1572.	oles in 4.9	4
11	[2 + 2 + 1] Cycloaddition of <i>N</i> -tosylhydrazones, <i>tert</i> -butyl nitrite and alkenes: a general and practical access to isoxazolines. Chemical Science, 2021, 12, 9823-9830.	7.4	15
12	Visible-light photocatalytic preparation of alkenyl thioethers from 1,2,3-thiadiazoles and Hantzsch esters: synthetic and mechanistic investigations. Organic Chemistry Frontiers, 2021, 8, 6499-6507.	4.5	3
13	Au(I) atalyzed Annulation of Benzofurazan Nâ€oxides with Ynamides: From Predicting the Chemo‧electivity to the Synthesis of 7â€Nitroindole Derivatives. Chinese Journal of Chemistry, 2020, 38, 57-62.	4.9	14
14	Radical-Mediated Distal Ipso-Migration of O/S-Containing Heteroaryls and DFT Studies for Migratory Aptitude. Organic Letters, 2020, 22, 5947-5952.	4.6	33
15	Transition Metalâ€Free, Baseâ€Induced Arylation of Amino Acids: Synthesis of N â€(para â€Substituted) Tj ETQo	1 1 0.78 1.5	4314 rgBT /C 2
16	Mechanistic Insights into the Rh(I)/Rh 2 (II) atalyzed Divergent Ringâ€Opening of Cyclopropenes: A Computational Study. ChemCatChem, 2020, 12, 5656-5663.	3.7	3
17	Mechanistic Understanding of the Pd(0)-Catalyzed Coupling Cyclization of 1,2-Allenyl Ketones with Aryl Halides: A Computational Study. ACS Catalysis, 2020, 10, 13202-13212.	11.2	14
18	Synthesis and <i>in vitro</i> anticancer activities of substituted <i>N</i> -(4′-nitrophenyl)- <scp> </scp> -prolinamides. Royal Society Open Science, 2020, 7, 200906.	2.4	2

#	Article	IF	CITATIONS
19	Oxidative Ringâ€Opening of 1 <i>H</i> â€Pyrazolâ€5â€amines and Its Application in Constructing Pyrazolo–Pyrrolo–Pyrazine Scaffolds by Domino Cyclization. European Journal of Organic Chemistry, 2020, 2020, 2956-2961.	2.4	7
20	Synthesis of 2â€(3â€Arylallylidene)â€3â€oxindoles via Dirhodium(II)â€Catalyzed Reaction of 3â€Diazoindolinâ€2á with 1â€Arylâ€Substituted Allylic Alcohols and Computational Insights. Advanced Synthesis and Catalysis, 2020, 362, 1292-1297.	â€imines 4.3	9
21	Mechanistic insights into the gold(<scp>i</scp>)-catalyzed annulation of propiolates with isoxazoles: a DFT study. Chemical Communications, 2019, 55, 11127-11130.	4.1	11
22	Lewis Base/BrÃ,nsted Acid Co atalyzed Enantioselective Sulfenylation/Semipinacol Rearrangement of Di―and Trisubstituted Allylic Alcohols. Angewandte Chemie - International Edition, 2019, 58, 12491-12496.	13.8	54
23	Highly Site-Selective Formation of Perfluoroalkylated Anilids via a Protecting Strategy by Molybdenum Hexacarbonyl Catalyst. Organic Letters, 2019, 21, 6481-6484.	4.6	21
24	Lewis Base/BrÃ,nsted Acid Co atalyzed Enantioselective Sulfenylation/Semipinacol Rearrangement of Di―and Trisubstituted Allylic Alcohols. Angewandte Chemie, 2019, 131, 12621-12626.	2.0	11
25	Gold-Catalyzed Silyl-Migrative Cyclization of Homopropargylic Alcohols Enabled by Bifunctional Biphenyl-2-ylphosphine and DFT Studies. Organic Letters, 2019, 21, 7791-7794.	4.6	11
26	Copper-Catalyzed Oxidative sp ³ -Carbon Radical Cross-Coupling with Trialkylphosphites Leading to α-Phosphonyl 1,3-Dicarbonyl Compounds. Journal of Organic Chemistry, 2019, 84, 2351-2357.	3.2	16
27	<i>>n</i> -Butyllithium catalyzed hydroboration of imines and alkynes. Organic Chemistry Frontiers, 2019, 6, 648-653.	4.5	64
28	Insights into the Mechanisms and Chemoselectivities of Carbamates and Amides in Reactions Involving Rh(II)-Azavinylcarbene: A Computational Study. Journal of Organic Chemistry, 2019, 84, 8151-8159.	3.2	5
29	Intermolecular Câ^H Amidation of (Hetero)arenes to Produce Amides through Rhodiumâ€Catalyzed Carbonylation of Nitrene Intermediates. Angewandte Chemie, 2019, 131, 8979-8984.	2.0	6
30	Intermolecular Câ^'H Amidation of (Hetero)arenes to Produce Amides through Rhodiumâ€Catalyzed Carbonylation of Nitrene Intermediates. Angewandte Chemie - International Edition, 2019, 58, 8887-8892.	13.8	35
31	Rhodium(<scp>ii</scp>)-catalyzed annulation of <i>N</i> -sulfonyl-1,2,3-triazoles with 1,3,5-triazinanes to produce octahydro-1 <i>H</i> -purine derivatives: a combined experimental and computational study. Chemical Communications, 2019, 55, 6090-6093.	4.1	42
32	Intramolecular Imino-ene Reaction of Azirines: Regioselectivity, Diastereoselectivity, and Computational Insights. Journal of Organic Chemistry, 2019, 84, 4095-4103.	3.2	4
33	Computational insights into different chemoselectivities in Rh ₂ (<scp>ii</scp>)-catalyzed <i>N</i> -aryl nitrene and analogous Rh ₂ (<scp>ii</scp>)/Cu(<scp>i</scp>)-catalyzed aryl-substituted carbene involving reactions. Catalysis Science and Technology, 2019, 9, 1518-1527.	4.1	6
34	Mechanistic insights into the different chemoselectivities of Rh ₂ (<scp>ii</scp>)-catalyzed ring expansion of cyclobutanol-substituted aryl azides and C–H bond amination of cyclopentanol-substituted aryl azides: a DFT study. Organic Chemistry Frontiers, 2018, 5, 1471-1482.	4.5	14
35	Significant enhancement of the photovoltaic performance of organic small molecule acceptors <i>via</i> side-chain engineering. Journal of Materials Chemistry A, 2018, 6, 7988-7996.	10.3	38
36	Mechanistic insights into Pd(0)-catalyzed intermolecular and intramolecular hydroamination of methylenecyclopropanes: a computational study. Dalton Transactions, 2018, 47, 5660-5669.	3.3	9

XIAO-GUANG BAO

#	Article	IF	CITATIONS
37	Computational Insights into the Goldâ€Catalyzed Ringâ€Opening of Methylenecyclopropanes and Vinylcyclopropanes with Sulfonamides. ChemCatChem, 2018, 10, 2817-2825.	3.7	19
38	Lanthanide aryloxides catalyzed hydroboration of aldehydes and ketones. Catalysis Communications, 2018, 112, 26-30.	3.3	29
39	Computational insights into the mechanisms of Ru-catalyzed cycloisomerization of 2-ethynylaniline and 2-(2-propynyl)tosylanilide: The role of pyridine in assisting the metal-vinylidene formation. Journal of Organometallic Chemistry, 2018, 864, 160-168.	1.8	7
40	Highly efficient hydroboration of carbonyl compounds catalyzed by tris(methylcyclopentadienyl)lanthanide complexes. Organic and Biomolecular Chemistry, 2018, 16, 2787-2791.	2.8	44
41	Mechanistic Insights into Cyclopropenes-Involved Carbonylative Carbocyclization Catalyzed by Rh(I) Catalyst: A DFT Study. Journal of Organic Chemistry, 2018, 83, 12734-12743.	3.2	13
42	<i>>n</i> -Butyllithium Catalyzed Selective Hydroboration of Aldehydes and Ketones. Journal of Organic Chemistry, 2018, 83, 10677-10683.	3.2	55
43	Experimental and computational studies on H ₂ O-promoted, Rh-catalyzed transient-ligand-free <i>ortho</i> -C(sp ²)–H amidation of benzaldehydes with dioxazolones. Chemical Communications, 2018, 54, 8889-8892.	4.1	35
44	[3 + 2] Cycloaddition of Nitrile Ylides with Diazonium Salts: Copper-Catalyzed One-Pot Synthesis of Fully Substituted 1,2,4-Triazoles. Organic Letters, 2018, 20, 5224-5227.	4.6	31
45	<i>In situ</i> generation of nitrile oxides from copper carbene and <i>tert</i> -butyl nitrite: synthesis of fully substituted isoxazoles. Organic and Biomolecular Chemistry, 2018, 16, 4683-4687.	2.8	26
46	Understanding the chemoselectivities between carbonyl and hydroxyl groups in the Rh(<scp>ii</scp>)–azavinyl carbene involved reactions. Catalysis Science and Technology, 2018, 8, 3379-3386.	4.1	12
47	Computational insights into the mechanisms of Au(<scp>i</scp>)-catalysed intramolecular addition of the hydroxylamine group onto alkynes. Organic Chemistry Frontiers, 2017, 4, 1130-1136.	4.5	15
48	Cobalt(II)-Catalyzed Synthesis of Sulfonyl Guanidines via Nitrene Radical Coupling with Isonitriles: A Combined Experimental and Computational Study. ACS Catalysis, 2017, 7, 3893-3899.	11.2	85
49	Mechanistic Insights into the Rh-Catalyzed Transannulation of Pyridotriazole with Phenylacetylene and Benzonitrile: A DFT Study. Journal of Organic Chemistry, 2017, 82, 3751-3759.	3.2	39
50	Mechanistic Investigations of the AuCl ₃ -Catalyzed Nitrene Insertion into an Aromatic C—H Bond of Mesitylene. Journal of Organic Chemistry, 2015, 80, 5795-5803.	3.2	10
51	Cu-based carbene involved in a radical process: a new crossover reaction to construct Î ³ -peroxy esters and 1,4-dicarbonyl compounds. Chemical Communications, 2015, 51, 14728-14731.	4.1	62
52	Computational exploration of the mechanism of copper-catalyzed aromatic C–H bond amination of benzene via a nitrene insertion approach. Chemical Communications, 2015, 51, 15414-15417.	4.1	19
53	Computational Investigations on the Transition-Metal-Catalyzed Cross-Coupling of Enynones with Diazo Compounds. Topics in Catalysis, 0, , 1.	2.8	0