Giuseppe L Squadrito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10483432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pyrazole-Based Lactate Dehydrogenase Inhibitors with Optimized Cell Activity and Pharmacokinetic Properties. Journal of Medicinal Chemistry, 2020, 63, 10984-11011.	6.4	30
2	Dynamic Imaging of LDH Inhibition in Tumors Reveals Rapid InÂVivo Metabolic Rewiring and Vulnerability to Combination Therapy. Cell Reports, 2020, 30, 1798-1810.e4.	6.4	73
3	Targeting Glycolysis through Inhibition of Lactate Dehydrogenase Impairs Tumor Growth in Preclinical Models of Ewing Sarcoma. Cancer Research, 2019, 79, 5060-5073.	0.9	86
4	Post-Exposure Antioxidant Treatment in Rats Decreases Airway Hyperplasia and Hyperreactivity Due to Chlorine Inhalation. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 599-606.	2.9	39
5	Targeted Aerosolized Delivery of Ascorbate in the Lungs of Chlorine-Exposed Rats. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2012, 25, 333-341.	1.4	13
6	Administration of nitrite after chlorine gas exposure prevents lung injury: Effect of administration modality. Free Radical Biology and Medicine, 2012, 53, 1431-1439.	2.9	30
7	Desferrioxamine inhibits protein tyrosine nitration: Mechanisms and implications. Free Radical Biology and Medicine, 2012, 53, 951-961.	2.9	10
8	Ascorbate and Deferoxamine Administration after Chlorine Exposure Decrease Mortality and Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 386-392.	2.9	60
9	Mitigation of chlorine gas lung injury in rats by postexposure administration of sodium nitrite. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L362-L369.	2.9	46
10	Chlorine Gas Exposure Causes Systemic Endothelial Dysfunction by Inhibiting Endothelial Nitric Oxide Synthase–Dependent Signaling. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 419-425.	2.9	46
11	Inhibition of Lung Fluid Clearance and Epithelial Na+ Channels by Chlorine, Hypochlorous Acid, and Chloramines. Journal of Biological Chemistry, 2010, 285, 9716-9728.	3.4	45
12	Elucidating mechanisms of chlorine toxicity: reaction kinetics, thermodynamics, and physiological implications. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L289-L300.	2.9	77
13	Mechanisms and Modification of Chlorine-induced Lung Injury in Animals. Proceedings of the American Thoracic Society, 2010, 7, 278-283.	3.5	77
14	On the hydrophobicity of nitrogen dioxide: Could there be a "lens―effect for NO2 reaction kinetics?. Nitric Oxide - Biology and Chemistry, 2009, 21, 104-109.	2.7	25
15	Mitigation of chlorine-induced lung injury by low-molecular-weight antioxidants. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L733-L743.	2.9	92
16	Hydrogen sulfide mediates the vasoactivity of garlic. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17977-17982.	7.1	724
17	Diamide downâ€regulates human αβγ ENaC activity in <i>Xenopus</i> oocytes. FASEB Journal, 2007, 21,	0.5	0
18	Free radical biology and medicine: it's a gas, man!. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R491-R511.	1.8	383

GIUSEPPE L SQUADRITO

#	Article	IF	CITATIONS
19	Mapping the Reaction of Peroxynitrite with CO2:  Energetics, Reactive Species, and Biological Implications. Chemical Research in Toxicology, 2002, 15, 885-895.	3.3	81
20	Role of Free Radicals in the Toxicity of Airborne Fine Particulate Matter. Chemical Research in Toxicology, 2001, 14, 1371-1377.	3.3	445
21	Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radical Biology and Medicine, 2001, 31, 1132-1138.	2.9	404
22	[52] Synthesis of inflammatory signal transduction species formed during ozonation and/or peroxidation of tissue lipids. Methods in Enzymology, 2000, 319, 570-582.	1.0	5
23	The role of combustion-generated radicals in the toxicity of PM2.5. Proceedings of the Combustion Institute, 2000, 28, 2675-2681.	3.9	71
24	Reaction of Uric Acid with Peroxynitrite and Implications for the Mechanism of Neuroprotection by Uric Acid. Archives of Biochemistry and Biophysics, 2000, 376, 333-337.	3.0	300
25	Nitration and Nitrosation by Peroxynitrite:  Role of CO2 and Evidence for Common Intermediates. Journal of the American Chemical Society, 2000, 122, 6911-6916.	13.7	49
26	[19] Direct and simultaneous ultraviolet second-derivative spectrophotometric determination of nitrite and nitrate in preparations of peroxynitrite. Methods in Enzymology, 1999, 301, 178-187.	1.0	10
27	Reaction of Peroxynitrite with Melatonin:  A Mechanistic Study. Chemical Research in Toxicology, 1999, 12, 526-534.	3.3	103
28	Lipid Ozonation Products Activate Phospholipases A2, C, and D. Toxicology and Applied Pharmacology, 1998, 150, 338-349.	2.8	63
29	Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radical Biology and Medicine, 1998, 25, 392-403.	2.9	712
30	The Nature of Reactive Species in Systems That Produce Peroxynitrite. Chemical Research in Toxicology, 1998, 11, 718-719.	3.3	44
31	Inactivation of Glutathione Peroxidase by Peroxynitrite. Archives of Biochemistry and Biophysics, 1998, 349, 1-6.	3.0	128
32	Nitrosation by Peroxynitrite: Use of Phenol as a Probe. Archives of Biochemistry and Biophysics, 1998, 358, 1-16.	3.0	48
33	The Reaction of Melatonin with Peroxynitrite: Formation of Melatonin Radical Cation and Absence of Stable Nitrated Products. Biochemical and Biophysical Research Communications, 1998, 251, 83-87.	2.1	94
34	Inhibition of Peroxynitrite-Mediated Oxidation of Glutathione by Carbon Dioxide. Archives of Biochemistry and Biophysics, 1997, 339, 183-189.	3.0	77
35	Carbon Dioxide Modulation of Hydroxylation and Nitration of Phenol by Peroxynitrite. Archives of Biochemistry and Biophysics, 1997, 345, 160-170.	3.0	110
36	The Mechanism of the Peroxynitrite–Carbon Dioxide Reaction Probed Using Tyrosine. Nitric Oxide - Biology and Chemistry, 1997, 1, 301-307.	2.7	32

GIUSEPPE L SQUADRITO

#	Article	IF	CITATIONS
37	Peroxynitrite-Mediated Oxidation of d,I-Selenomethionine. Free Radical Biology and Medicine, 1997, 23, 917-926.	2.9	24
38	The Catalytic Role of Carbon Dioxide in the Decomposition of Peroxynitrite. Free Radical Biology and Medicine, 1997, 23, 331-338.	2.9	84
39	[34] Distinguishing reactivities of peroxynitrite and hydroxyl radical. Methods in Enzymology, 1996, 269, 366-374.	1.0	8
40	Insensitivity of the Rate of Decomposition of Peroxynitrite to Changes in Viscosity; Evidence against Free Radical Formation. Journal of the American Chemical Society, 1996, 118, 3125-3128.	13.7	57
41	Acceleration of Peroxynitrite Oxidations by Carbon Dioxide. Archives of Biochemistry and Biophysics, 1996, 327, 335-343.	3.0	299
42	Competitive reactions of peroxynitrite with 2′-deoxyguanosine and 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxodG): Relevance to the formation of 8-oxodG in DNA exposed to peroxynitrite. Free Radical Biology and Medicine, 1996, 21, 407-411.	2.9	86
43	Direct and indirect oxidations by peroxynitrite, neither involving the hydroxyl radical. Free Radical Biology and Medicine, 1996, 21, 965-974.	2.9	122
44	Detection of Aldehydes in Bronchoalveolar Lavage of Rats Exposed to Ozone. Toxicological Sciences, 1996, 34, 148-156.	3.1	2
45	[29] Synthesis of peroxynitrite by azide-ozone reaction. Methods in Enzymology, 1996, 269, 311-321.	1.0	66
46	[26] Selecting the most appropriate synthesis of peroxynitrite. Methods in Enzymology, 1996, 269, 285-295.	1.0	31
47	A practical method for preparing peroxynitrite solutions of low ionic strength and free of hydrogen peroxide. Free Radical Biology and Medicine, 1995, 18, 75-83.	2.9	177
48	The cascade mechanism to explain ozone toxicity: The role of lipid ozonation products. Free Radical Biology and Medicine, 1995, 19, 935-941.	2.9	280
49	The formation of peroxynitrite in vivo from nitric oxide and superoxide. Chemico-Biological Interactions, 1995, 96, 203-206.	4.0	183
50	A new mechanism for the toxicity of ozone. Toxicology Letters, 1995, 82-83, 287-293.	0.8	85
51	[17] Quantifying aldehydes and distinguishing aldehydic product profiles from autoxidation and ozonation of unsaturated fatty acids. Methods in Enzymology, 1994, 233, 174-182.	1.0	17
52	Activation of Phospholipase A2 in 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine Liposomes Containing Lipid Ozonation Products. Chemical Research in Toxicology, 1994, 7, 458-462.	3.3	17
53	Identification of heptanal and nonanal in bronchoalveolar lavage from rats exposed to low levels of ozone. Biochemical and Biophysical Research Communications, 1992, 188, 129-134.	2.1	39
54	Production of the criegee ozonide during the ozonation of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes. Lipids, 1992, 27, 955-958.	1.7	42

#	Article	IF	CITATIONS
55	Proton NMR studies on mutagenic nitrofluoranthenes and exposure risk assessment. Chemical Research in Toxicology, 1990, 3, 231-235.	3.3	11
56	Anomalous nitration of fluoranthene with nitrogen dioxide in carbon tetrachloride. Journal of the American Chemical Society, 1987, 109, 6535-6537.	13.7	19