
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10482258/publications.pdf Version: 2024-02-01

R SEDMACE

#	Article	IF	CITATIONS
1	Interpretation of the 1/C ² Curvature and Discontinuity in Electrochemical Capacitance Voltage Profiling of Heavily Ga Implanted SiGe Followed by Melt Laser Annealing. ECS Journal of Solid State Science and Technology, 2020, 9, 123008.	1.8	4
2	Electrochemical capacitance voltage measurements in highly doped silicon and silicon-germanium alloys. Journal of Applied Physics, 2016, 119, .	2.5	18
3	Very low temperature (450 °C) selective epitaxial growth of heavily <i>in situ</i> boron-doped SiGe layers. Semiconductor Science and Technology, 2015, 30, 115006.	2.0	8
4	Very Low Temperature (Cyclic) Deposition / Etch of In Situ Boron-Doped SiGe Raised Sources and Drains. ECS Journal of Solid State Science and Technology, 2014, 3, P382-P390.	1.8	10
5	Dynamics of microcavity polaritons in the presence of an electron gas. Physical Review B, 2006, 73, .	3.2	31
6	Thermal emission and band-filling effects on the photoluminescence rise time of InGaAs/InAs/GaAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 28, 22-27.	2.7	8
7	Microcavity polariton spin quantum beats without a magnetic field: A manifestation of Coulomb exchange in dense and polarized polariton systems. Physical Review B, 2005, 72, .	3.2	116
8	Monitoring the dynamics of a coherent cavity polariton population. Physical Review B, 2005, 71, .	3.2	29
9	Radiative recombination lifetime of excitons in self-organized InAs/GaAs quantum dots. Solid State Communications, 2003, 128, 213-217.	1.9	23
10	Propagation and Scattering of Exciton-Polaritons in a Graded Semiconductor Microcavity. Physica Status Solidi A, 2002, 190, 339-343.	1.7	0
11	Non-Linear Spin-Dependent Polariton Emission in Semiconductor Microcavities. Physica Status Solidi A, 2002, 190, 407-411.	1.7	3
12	Time-Resolved Measurement of Stimulated Polariton Relaxation. Physica Status Solidi A, 2002, 190, 827-831.	1.7	6
13	Time resolved stimulated emission in excitonic semiconductor microcavities. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 390-393.	2.7	4
14	Polariton acceleration in a microcavity wedge. Physical Review B, 2001, 64, .	3.2	18
15	Drift and Diffusion of Exciton-Polaritons in a Graded Quantum Microcavity. Physica Status Solidi A, 2001, 183, 23-27.	1.7	0
16	Time-resolved probing of the Purcell effect for InAs quantum boxes in GaAs microdisks. Applied Physics Letters, 2001, 78, 2828-2830.	3.3	45
17	Ballistic transport of exciton-polaritons in a graded quantum microcavity. Springer Proceedings in Physics, 2001, , 665-666.	0.2	0
18	Investigation of carbon-doped base materials grown by CBE for Al-free InP HBTs. Journal of Crystal Growth, 2000, 209, 476-480.	1.5	9

#	Article	IF	CITATIONS
19	Resonant Rayleigh scattering mediated by 2D cavity polaritons. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 676-680.	2.7	2
20	In-plane propagation of excitonic cavity polaritons. Physical Review B, 2000, 61, 7233-7236.	3.2	44
21	Microcavity polariton depopulation as evidence for stimulated scattering. Physical Review B, 2000, 62, R16263-R16266.	3.2	86
22	Annular resonant Rayleigh scattering in the picosecond dynamics of cavity polaritons. Physical Review B, 1999, 60, R8509-R8512.	3.2	37
23	Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity. Physical Review Letters, 1998, 81, 1110-1113.	7.8	946
24	CBE growth of carbon doped InGaAs/InP HBTs for 25Gbit/s circuits. Journal of Crystal Growth, 1998, 188, 349-354.	1.5	10
25	Cd0.88Zn0.12Te group index measurements near the exciton energy at low temperature. Journal of Applied Physics, 1998, 83, 7903-7908.	2.5	11
26	Time-resolved spontaneous emission of excitons in a microcavity: Behavior of the individual exciton-photon mixed states. Physical Review B, 1996, 53, 16516-16523.	3.2	103
27	Nonguiding semiconductor microcavity: Exciton-photon mode splitting and photoluminescence dynamics. Solid-State Electronics, 1996, 40, 487-491.	1.4	2
28	quantum boxes obtained by self-organized growth: Intrinsic electronic properties and applications. Solid-State Electronics, 1996, 40, 807-814.	1.4	29
29	Improved stability of C-doped GaAs grown by chemical beam epitaxy for heterojunction bipolar transistor applications. Journal of Crystal Growth, 1996, 158, 210-216.	1.5	5
30	InAs quantum boxes: Highly efficient radiative traps for light emitting devices on Si. Applied Physics Letters, 1996, 68, 3123-3125.	3.3	155
31	Quasi-planar GaAs heterojunction bipolar transistor device entirely grown by chemical beam epitaxy. Journal of Crystal Growth, 1994, 136, 235-240.	1.5	6
32	Coherence Effects on the Exciton Radiative Recombination in Quantum Wells. NATO ASI Series Series B: Physics, 1994, , 267-272.	0.2	0
33	Radiative recombination of free excitons in GaAs quantum wells. Superlattices and Microstructures, 1993, 13, 271.	3.1	20
34	Lifetime of excitons in GaAs quantum wells. European Physical Journal Special Topics, 1993, 03, 19-25.	0.2	5
35	Free Exciton Radiative Recombination in GaAs Quantum Wells. , 1993, , 129-144.		0
36	Time-resolved exciton transfer in GaAs/AlxGa1â^'xAs double-quantum-well structures. Physical Review B, 1992, 45, 11782-11794.	3.2	44

#	Article	IF	CITATIONS
37	Enhanced radiative recombination of free excitons in GaAs quantum wells. Surface Science, 1992, 263, 491-495.	1.9	177
38	Optical characterization of the interface in GaAs/AlAs quantum wells. Surface Science, 1992, 267, 199-203.	1.9	5
39	Luminescence of narrow RIE etched In1â^'xGaxAs/InP and GaAs/Ga1â^'xAlxAs quantum wires. Surface Science, 1992, 267, 253-256.	1.9	7
40	Very high gain in carbon-doped base heterojunction bipolar transistor grown by chemical beam epitaxy. Electronics Letters, 1992, 28, 1344.	1.0	29
41	High static performance GalnAs-GalnAsP SCH MQW 1.5 mu m wavelength buried ridge stripe lasers. IEEE Journal of Quantum Electronics, 1991, 27, 1794-1797.	1.9	11
42	Enhanced radiative recombination of free excitons in GaAs quantum wells. Physical Review Letters, 1991, 67, 2355-2358.	7.8	310
43	Properties of GaAsî—,AlAs type I superlattices. Superlattices and Microstructures, 1990, 8, 255-258.	3.1	0
44	Differentiation of the non radiative recombination properties of the two interfaces of MBE grown GaAs-GaAlAs quantum wells. Superlattices and Microstructures, 1990, 8, 417-419.	3.1	6
45	Microfabrication and optical study of reactive ion etched InGaAsP/InP and GaAs/GaAlAs quantum wires. Applied Physics Letters, 1990, 56, 830-832.	3.3	57
46	Tunnelling and Relaxation in Coupled Quantum Wells. Europhysics Letters, 1990, 11, 367-372.	2.0	64
47	Radiative and non-radiative recombination in GaAsî—,AlGaAs superlattices. Surface Science, 1990, 228, 210-212.	1.9	7
48	Temperature dependence of electronic vertical transport in short period GaAsî—,AlGaAs superlattices. Surface Science, 1990, 228, 446-448.	1.9	2
49	Vertical transport of electrons and holes in short period GaAsî—,AlGaAs superlattices. Superlattices and Microstructures, 1989, 5, 565-567.	3.1	12
50	Electron and hole transport properties in GaAs-AlGaAs superlattices. Journal of Luminescence, 1989, 44, 277-283.	3.1	27
51	Radiative and non-radiative recombination in GaAs/AlxGa1â^'xAs quantum wells. Superlattices and Microstructures, 1989, 6, 373-376.	3.1	35
52	Density-dependent transition from electron to ambipolar vertical transport in short-period GaAs-AlGaAs superlattices. Semiconductor Science and Technology, 1989, 4, 513-517.	2.0	23
53	INTERFACE RECOMBINATION IN GaAs-GaAlAs QUANTUM WELLS. Journal De Physique Colloque, 1987, 48, C5-135-C5-138.	0.2	4
54	Comparison of Auger recombination in GalnAs-AlInAs multiple quantum well structure and in bulk GalnAs. IEEE Journal of Quantum Electronics, 1986, 22, 774-780.	1.9	62

#	Article	IF	CITATIONS
55	Auger recombination in GalnAsî—AlInAs multiple quantum well structure. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1985, 134, 417-421.	0.9	1
56	Temperature dependence of carrier lifetime and Auger recombination in 1.3 μm InGaAsP. Journal of Applied Physics, 1985, 57, 5443-5449.	2.5	52
57	Comparison of Auger recombination in a GalnAs/AllnAs multiple quantum well structure and in bulk GalnAs. , 1985, , .		Ο
58	Photoexcited carrier lifetime and Auger recombination in 1.3â€Î¼m InGaAsP. Applied Physics Letters, 1983, 42, 259-261.	3.3	82
59	Determination of the exciton energy from electron beam excited luminescence in direct gap semiconductors. Solid-State Electronics, 1978, 21, 1361-1363.	1.4	4
60	Reabsorption of the excitonic luminescence in direct band gap semiconductors. Physical Review B, 1977, 15, 3935-3946.	3.2	58
61	Carrier lifetime in carbon doped In/sub 0.53/Ga/sub 0.47/As. , 0, , .		3
62	Improvement of CBE grown InGaAs/InP HBT's using a carbon doped and compositionally graded base. , 0,		5