Anneloor L M A Ten Asbroek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1048124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	8.1	517
2	Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS. Neuron, 2014, 84, 324-331.	8.1	308
3	NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1037-1042.	21.4	218
4	Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Science Translational Medicine, 2017, 9, .	12.4	129
5	Molecular classification of amyotrophic lateral sclerosis by unsupervised clustering of gene expression in motor cortex. Neurobiology of Disease, 2015, 74, 359-376.	4.4	79
6	ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function. Neurobiology of Aging, 2018, 71, 266.e1-266.e10.	3.1	59
7	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	9.0	46
8	The involvement of human ribonucleases H1 and H2 in the variation of response of cells to antisense phosphorothioate oligonucleotides. FEBS Journal, 2002, 269, 583-592.	0.2	44
9	The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. International Journal of Molecular Sciences, 2021, 22, 7081.	4.1	23
10	Polymorphisms in the large subunit of human RNA polymerase II as target for allele-specific inhibition. Nucleic Acids Research, 2000, 28, 1133-1138.	14.5	16
11	An alternative approach to produce versatile retinal organoids with accelerated ganglion cell development. Scientific Reports, 2021, 11, 1101.	3.3	16
12	Genetic variation in mRNA coding sequences of highly conserved genes. Physiological Genomics, 2001, 5, 113-118.	2.3	14
13	Rev-Erbα and Photoreceptor Outer Segments modulate the Circadian Clock in Retinal Pigment Epithelial Cells. Scientific Reports, 2019, 9, 11790.	3.3	14
14	The circadian clock regulates RPE-mediated lactate transport via SLC16A1 (MCT1). Experimental Eye Research, 2020, 190, 107861.	2.6	13
15	A review of treatment modalities in gyrate atrophy of the choroid and retina (GACR). Molecular Genetics and Metabolism, 2021, 134, 96-116.	1.1	9
16	Expression profiling of sciatic nerve in a Charcotâ€Marieâ€Tooth disease type 1a mouse model. Journal of Neuroscience Research, 2005, 79, 825-835.	2.9	7
17	Does the circadian clock make RPE-mediated ion transport "tick―via SLC12A2 (NKCC1)?. Chronobiology International, 2019, 36, 1592-1598.	2.0	5
18	Ribonuclease H1 Maps to Chromosome 2 and Has at Least Three Pseudogene Loci in the Human Genome. Genomics, 2002, 79, 818-823.	2.9	4

#	Article	IF	CITATIONS
19	Comparison of schwann cell and sciatic nerve transcriptomes indicates that mouse is a valid model for the human peripheral nervous system. Journal of Neuroscience Research, 2006, 84, 542-552.	2.9	2