
Hao Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10481157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genome of the pear (<i>Pyrus bretschneideri</i> Rehd.). Genome Research, 2013, 23, 396-408.	2.4	832
2	Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biology, 2019, 20, 38.	3.8	542
3	High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. Journal of Experimental Botany, 2014, 65, 5771-5781.	2.4	171
4	Diversification and independent domestication of Asian and European pears. Genome Biology, 2018, 19, 77.	3.8	149
5	Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biology, 2015, 15, 12.	1.6	138
6	Different Modes of Gene Duplication Show Divergent Evolutionary Patterns and Contribute Differently to the Expansion of Gene Families Involved in Important Fruit Traits in Pear (Pyrus) Tj ETQq0 0 0 rgBT	/O vø rlock	10 76 f 50 537
7	Unbiased subgenome evolution following a recent whole-genome duplication in pear (Pyrus) Tj ETQq1 1 0.7843	.4 rgBT /O	verlock 10 Tf
8	Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide-gated channels gene family in pear (Pyrus bretchneideri Rehd.). Genomics, 2015, 105, 39-52.	1.3	52
9	Chemical Composition and Crystal Morphology of Epicuticular Wax in Mature Fruits of 35 Pear (Pyrus) Tj ETQq1	1 0.78431	4 rgBT /Over
10	Chemical composition, crystal morphology and key gene expression of cuticular waxes of Asian pears at harvest and after storage. Postharvest Biology and Technology, 2017, 132, 71-80.	2.9	51
11	Overexpression of a bHLH1 Transcription Factor of Pyrus ussuriensis Confers Enhanced Cold Tolerance and Increases Expression of Stress-Responsive Genes. Frontiers in Plant Science, 2016, 7, 441.	1.7	45
12	F-box genes: Genome-wide expansion, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri). Plant Science, 2016, 253, 164-175.	1.7	42
13	Construction of a high-density genetic linkage map in pear (Pyrus communis×Pyrus pyrifolia nakai) using SSRs and SNPs developed by SLAF-seq. Scientia Horticulturae, 2017, 218, 198-204.	1.7	42
14	Gene-expression profile of developing pollen tube of Pyrus bretschneideri. Gene Expression Patterns, 2016, 20, 11-21.	0.3	40
15	Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species. Molecular Genetics and Genomics, 2016, 291, 1727-1742.	1.0	32
16	Single-pollen-cell sequencing for gamete-based phased diploid genome assembly in plants. Genome Research, 2019, 29, 1889-1899.	2.4	28
17	Comparative Genomic Analysis Reveals Multiple Long Terminal Repeats, Lineage-Specific Amplification, and Frequent Interelement Recombination for Cassandra Retrotransposon in Pear (Pyrus) Tj ETQq1 1 0.784314 r	gBiT1/Overl	lo ძ ნ10 Tf 50
18	Evolution, expression analysis, and functional verification of Catharanthus roseus RLK1-like kinase (CrRLK1L) family proteins in pear (Pyrus bretchneideri). Genomics, 2017, 109, 290-301.	1.3	25

Hao Yin

#	Article	IF	CITATIONS
19	Genome-wide comparative analysis of the BAHD superfamily in seven Rosaceae species and expression analysis in pear (Pyrus bretschneideri). BMC Plant Biology, 2020, 20, 14.	1.6	22
20	TARE1, a Mutated Copia-Like LTR Retrotransposon Followed by Recent Massive Amplification in Tomato. PLoS ONE, 2013, 8, e68587.	1.1	20
21	Genome-wide identification and comparative analysis of the ADH gene family in Chinese white pear (Pyrus bretschneideri) and other Rosaceae species. Genomics, 2020, 112, 3484-3496.	1.3	20
22	Genome-wide Annotation and Comparative Analysis of Long Terminal Repeat Retrotransposons between Pear Species of P. bretschneideri and P. Communis. Scientific Reports, 2015, 5, 17644.	1.6	16
23	Dynamic transcriptome analysis of root nitrate starvation and re-supply provides insights into nitrogen metabolism in pear (Pyrus bretschneideri). Plant Science, 2018, 277, 322-333.	1.7	15
24	Transcriptomic and Gas Chromatography–Mass Spectrometry Metabolomic Profiling Analysis of the Epidermis Provides Insights into Cuticular Wax Regulation in Developing â€~Yuluxiang' Pear Fruit. Journal of Agricultural and Food Chemistry, 2019, 67, 8319-8331.	2.4	15
25	Identification of Shaker K+ channel family members in Rosaceae and a functional exploration of PbrKAT1. Planta, 2019, 250, 1911-1925.	1.6	14
26	Genome-wide survey and expression analysis of the SLAC/SLAH gene family in pear (Pyrus) Tj ETQq0 0 0 rgBT /Ov	verloçk 10 1.3	Tf 50 462 Td 10
27	Evaluation of new IRAP markers of pear and their potential application in differentiating bud sports	0.6	9

	and other Rosaceae species. Tree Genetics and Genomes, 2015, 11, 1.	0.0	
28	Genome-wide identification of lysin motif containing protein family genes in eight rosaceae species, and expression analysis in response to pathogenic fungus Botryosphaeria dothidea in Chinese white pear. BMC Genomics, 2020, 21, 612.	1.2	9
29	Identification of differentially expressed genes using digital gene expression profiles in Pyrus pyrifolia Nakai cv. Hosui bud release following early defoliation. Tree Genetics and Genomes, 2015, 11, 1.	0.6	6
30	PbrSLAH3 is a nitrate-selective anion channel which is modulated by calcium-dependent protein kinase 32 in pear. BMC Plant Biology, 2019, 19, 190.	1.6	6
31	Effects of palmitic acid (16:0), hexacosanoic acid (26:0), ethephon and methyl jasmonate on the cuticular wax composition, structure and expression of key gene in the fruits of three pear cultivars. Functional Plant Biology, 2020, 47, 156.	1.1	6
32	Genome-wide identification and comparative evolutionary analysis of sorbitol metabolism pathway genes in four Rosaceae species and three model plants. BMC Plant Biology, 2022, 22, .	1.6	5
33	PbrPOE21 inhibits pear pollen tube growth in vitro by altering apical reactive oxygen species content. Planta, 2020, 252, 43.	1.6	3
34	TGTT and AACA: two transcriptionally active LTR retrotransposon subfamilies with a specific LTR structure and horizontal transfer in four Rosaceae species. Mobile DNA, 2017, 8, 14.	1.3	2