D Neil Granger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10480881/publications.pdf Version: 2024-02-01

D NEIL CRANCER

#	Article	IF	CITATIONS
1	Pathophysiology of ischaemia-reperfusion injury. Journal of Pathology, 2000, 190, 255-266.	4.5	1,444
2	Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biology, 2015, 6, 524-551.	9.0	1,009
3	The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. Journal of Leukocyte Biology, 1994, 55, 662-675.	3.3	725
4	Role of T Lymphocytes and Interferon- \hat{I}^3 in Ischemic Stroke. Circulation, 2006, 113, 2105-2112.	1.6	629
5	Neutrophil-mediated mucosal injury. Digestive Diseases and Sciences, 1988, 33, 6S-15S.	2.3	404
6	The cellular and molecular basis of gastric mucosal defense. FASEB Journal, 1996, 10, 731-740.	0.5	302
7	THE ROLE OF THE COMPLEMENT SYSTEM IN ISCHEMIA-REPERFUSION INJURY. Shock, 2004, 21, 401-409.	2.1	281
8	Signaling Pathways for Early Brain Injury after Subarachnoid Hemorrhage. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 916-925.	4.3	280
9	Heterogeneity of Expression of E- and P-Selectins In Vivo. Circulation Research, 1996, 79, 560-569.	4.5	273
10	[80] Assessment of leukocyte involvement during ischemia and reperfusion of intestine. Methods in Enzymology, 1990, 186, 729-742.	1.0	264
11	Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radical Biology and Medicine, 2012, 52, 556-592.	2.9	258
12	Reperfusion Injury. Surgical Clinics of North America, 1992, 72, 65-83.	1.5	249
13	Cell adhesion molecules and ischemic stroke. Neurological Research, 2008, 30, 783-793.	1.3	246
14	Leukocyte Recruitment and Ischemic Brain Injury. NeuroMolecular Medicine, 2010, 12, 193-204.	3.4	239
15	Ischemiaâ€Reperfusion: Mechanisms of Microvascular Dysfunction and the Influence of Risk Factors for Cardiovascular Disease. Microcirculation, 1999, 6, 167-178.	1.8	231
16	Gamma secretase–mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nature Medicine, 2006, 12, 621-623.	30.7	229
17	Regulation of Murine Intestinal Inflammation by Reactive Metabolites of Oxygen and Nitrogen. Journal of Experimental Medicine, 2001, 194, 1207-1218.	8.5	228
18	Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide1. Free Radical Biology and Medicine, 2002, 33, 1026-1036.	2.9	228

#	Article	IF	CITATIONS
19	Leukocyte-endothelial cell adhesion: avenues for therapeutic intervention. British Journal of Pharmacology, 1999, 126, 537-550.	5.4	226
20	Mechanisms of Reperfusion Injury. American Journal of the Medical Sciences, 1994, 307, 284-292.	1.1	215
21	Blood cells and endothelial barrier function. Tissue Barriers, 2015, 3, e978720.	3.2	212
22	Platelets: a critical link between inflammation and microvascular dysfunction. Journal of Physiology, 2012, 590, 1023-1034.	2.9	191
23	Myocardial ischemia-reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H1567-H1573.	3.2	183
24	Stroke and T-Cells. NeuroMolecular Medicine, 2005, 7, 229-242.	3.4	161
25	Effects of Fluvastatin on Leukocyte–Endothelial Cell Adhesion in Hypercholesterolemic Rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 1521-1526.	2.4	159
26	Effects of neutrophil-derived oxidants on intestinal permeability, electrolyte transport, and epithelial cell viability. Inflammation, 1990, 14, 531-542.	3.8	157
27	Molecular Mechanisms of Anoxia/Reoxygenation-Induced Neutrophil Adherence to Cultured Endothelial Cells. Circulation Research, 1997, 81, 922-931.	4.5	153
28	Hemorrhagic Shock-induced Bacterial Translocation: The Role of Neutrophils and Hydroxyl Radicals. Journal of Trauma, 1990, 30, 942-952.	2.3	152
29	Gastric Mucosal Injury in the Rat. Gastroenterology, 1987, 92, 950-956.	1.3	147
30	Microvascular Responses to Cardiovascular Risk Factors. Microcirculation, 2010, 17, 192-205.	1.8	146
31	Expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in acute and chronic inflammation. Journal of Leukocyte Biology, 1999, 65, 349-355.	3.3	145
32	Platelet–Leukocyte–Endothelial Cell Interactions after Middle Cerebral Artery Occlusion and Reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 907-915.	4.3	142
33	Collagen-binding integrin $\hat{l}\pm1\hat{l}^21$ regulates intestinal inflammation in experimental colitis. Journal of Clinical Investigation, 2002, 110, 1773-1782.	8.2	139
34	Role of neutrophil-endothelial cell adhesion in inflammatory disorders. Journal of Critical Care, 1994, 9, 47-71.	2.2	138
35	Heme oxygenase modulates selectin expression in different regional vascular beds. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1613-H1617.	3.2	137
36	Apolipoprotein A-IV inhibits experimental colitis. Journal of Clinical Investigation, 2004, 114, 260-269.	8.2	129

#	Article	IF	CITATIONS
37	Blood Cell-Derived RANTES Mediates Cerebral Microvascular Dysfunction, Inflammation, and Tissue Injury After Focal Ischemia–Reperfusion. Stroke, 2008, 39, 2560-2570.	2.0	129
38	Role of AT1 receptors and NAD(P)H oxidase in diabetes-aggravated ischemic brain injury. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H2442-H2451.	3.2	124
39	Inflammatory Responses Underlying the Microvascular Dysfunction Associated with Obesity and Insulin Resistance. Microcirculation, 2007, 14, 375-387.	1.8	124
40	Diabetes Exacerbates Inflammatory Responses to Ischemia-Reperfusion. Circulation, 1996, 93, 161-167.	1.6	123
41	CD40/CD40 Ligand Signaling in Mouse Cerebral Microvasculature After Focal Ischemia/Reperfusion. Circulation, 2005, 111, 1690-1696.	1.6	122
42	Microvascular Responses to Inhibition of Nitric Oxide Production. Circulation Research, 1995, 76, 30-39.	4.5	120
43	Ischemia-reperfusion injury: A radical view. Hepatology, 1988, 8, 680-682.	7.3	118
44	Molecular Determinants of the Prothrombogenic and Inflammatory Phenotype Assumed by the Postischemic Cerebral Microcirculation. Stroke, 2003, 34, 1777-1782.	2.0	117
45	Modulation of the Inflammatory Response in Cardiovascular Disease. Hypertension, 2004, 43, 924-931.	2.7	116
46	Inflammatory bowel disease. Inflammatory Bowel Diseases, 2009, 15, 1245-1255.	1.9	115
47	NAD(P)H Oxidase–Derived Superoxide Mediates Hypercholesterolemia-Induced Leukocyte–Endothelial Cell Adhesion. Circulation Research, 2001, 88, 499-505.	4.5	114
48	Impact of Dextran Sulfate Sodium Load on the Severity of Inflammation in Experimental Colitis. Digestive Diseases and Sciences, 2004, 49, 556-564.	2.3	113
49	Oxidative stress promotes blood cell-endothelial cell interactions in the microcirculation. Cardiovascular Toxicology, 2002, 2, 165-180.	2.7	111
50	Hypoxia/Reoxygenation increases the permeability of endothelial cell monolayers: Role of oxygen radicals. Free Radical Biology and Medicine, 1990, 9, 219-223.	2.9	110
51	Leukocyte – endothelial cell adhesion induced by ischemia and reperfusion. Canadian Journal of Physiology and Pharmacology, 1993, 71, 67-75.	1.4	109
52	Formyl-Peptide Receptor 2/3/Lipoxin A ₄ Receptor Regulates Neutrophil-Platelet Aggregation and Attenuates Cerebral Inflammation. Circulation, 2016, 133, 2169-2179.	1.6	109
53	Inflammatory responses to ischemia and reperfusion in the cerebral microcirculation. Frontiers in Bioscience - Landmark, 2004, 9, 1339.	3.0	108
54	Activation of the annexin 1 counterâ€regulatory circuit affords protection in the mouse brain microcirculation. FASEB Journal, 2007, 21, 1751-1758.	0.5	107

#	Article	IF	CITATIONS
55	Cerebral Microvascular Responses to Hypercholesterolemia. Circulation Research, 2004, 94, 239-244.	4.5	103
56	Contributions of LFA-1 and Mac-1 to brain injury and microvascular dysfunction induced by transient middle cerebral artery occlusion. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2555-H2560.	3.2	101
57	Inflammatory and Injury Responses to Ischemic Stroke in Obese Mice. Stroke, 2008, 39, 943-950.	2.0	101
58	Mechanisms of Gastrointestinal Ischemiaâ€Reperfusion Injury and Potential Therapeutic Interventions: A Review and Its Implications in the Horse. Journal of Veterinary Internal Medicine, 1995, 9, 115-132.	1.6	98
59	Inflammation and the Microcirculation. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2010, 2, 1-87.	0.3	92
60	The Chemotactic Peptide N-Formyl Methionyl-Loucyl-Phenylalanine Increases Mucosal Permeability in the Distal Ileum of the Rat. Gastroenterology, 1988, 95, 651-656.	1.3	91
61	Platelets modulate ischemia/reperfusion-induced leukocyte recruitment in the mesenteric circulation. American Journal of Physiology - Renal Physiology, 2001, 281, G1432-G1439.	3.4	88
62	Morphologic assessment of leukocyte-endothelial cell interactions in mesenteric venules subjected to ischemia and reperfusion. Inflammation, 1991, 15, 331-346.	3.8	87
63	Apolipoprotein A-IV inhibits experimental colitis. Journal of Clinical Investigation, 2004, 114, 260-269.	8.2	84
64	Obesity Exacerbates Sepsisâ€Induced Inflammation and Microvascular Dysfunction in Mouse Brain. Microcirculation, 2005, 12, 183-194.	1.8	83
65	Evidence Implicating Xanthine Oxidase and Neutrophils in Reperfusionâ€Induced Microvascular Dysfunction a. Annals of the New York Academy of Sciences, 1994, 723, 158-179.	3.8	82
66	Low venular shear rates promote leukocyte-dependent recruitment of adherent platelets. American Journal of Physiology - Renal Physiology, 2003, 284, G123-G129.	3.4	82
67	Leukocyte-Endothelial Cell Adhesive Interactions: Role of Xanthine Oxidase-Derived Oxidants. Journal of Leukocyte Biology, 1991, 50, 488-494.	3.3	81
68	Hypercholesterolemia Promotes P-Selectin–Dependent Platelet–Endothelial Cell Adhesion in Postcapillary Venules. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 675-680.	2.4	81
69	Role of blood cells in ischaemia-reperfusion induced endothelial barrier failure. Cardiovascular Research, 2010, 87, 291-299.	3.8	78
70	Leukocyte and endothelial cell adhesion molecules in a chronic murine model of myocardial reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2196-H2201.	3.2	77
71	Platelet–Vessel Wall Interactions in the Microcirculation. Microcirculation, 2005, 12, 275-285.	1.8	77
72	Colchicine and methotrexate reduce leukocyte adherence and emigration in rat mesenteric venules. Inflammation, 1992, 16, 45-56.	3.8	75

#	Article	IF	CITATIONS
73	Angiotensin Il–Mediated Microvascular Thrombosis. Hypertension, 2010, 56, 1089-1095.	2.7	75
74	Apigenin Inhibits Tumor Necrosis Factor-Induced Intercellular Adhesion Molecule-1 UpregulationIn Vivo. Microcirculation, 1996, 3, 279-286.	1.8	73
75	Role of superoxide in hemorrhagic shock-induced P-selectin expression. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H791-H797.	3.2	73
76	Superoxide mediates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H535-H541.	3.2	72
77	Myocardial ischemia-reperfusion injury in CD18- and ICAM-1-deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H2300-H2307.	3.2	70
78	T-Lymphocytes Modulate the Microvascular and Inflammatory Responses to Intestinal Ischemia-Reperfusion. Microcirculation, 2002, 9, 99-109.	1.8	69
79	Quantitative Measurement of P- and E-Selectin Adhesion Molecules in Acute Pancreatitis. Annals of Surgery, 2000, 231, 213-222.	4.2	68
80	Roles of Inflammation and the Activated Protein C Pathway in the Brain Edema Associated With Cerebral Venous Sinus Thrombosis. Stroke, 2010, 41, 147-152.	2.0	67
81	Inflammation-Induced Intestinal Hyperemia in the Rat: Role of Neutrophils. Gastroenterology, 1988, 95, 1528-1534.	1.3	66
82	Inhibition of CD147 (Cluster of Differentiation 147) Ameliorates Acute Ischemic Stroke in Mice by Reducing Thromboinflammation. Stroke, 2017, 48, 3356-3365.	2.0	65
83	CD40–CD40 Ligand Mediates the Recruitment of Leukocytes and Platelets in the Inflamed Murine Colon. Gastroenterology, 2007, 132, 955-965.	1.3	64
84	Mechanisms Underlying the Cerebral Microvascular Responses to Angiotensin II-Induced Hypertension. Microcirculation, 2010, 17, 641-649.	1.8	64
85	Reactive oxygen metabolites, neutrophils, and the pathogenesis of ischemic-tissue/reperfusion. Clinical Cardiology, 1993, 16, 19-26.	1.8	63
86	Colonic blood flow responses in experimental colitis: time course and underlying mechanisms. American Journal of Physiology - Renal Physiology, 2005, 289, G1024-G1029.	3.4	63
87	Nitric oxide modulates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H1111-H1117.	3.2	62
88	Endothelial cell P-selectin mediates a proinflammatory and prothrombogenic phenotype in cerebral venules of sickle cell transgenic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1608-H1614.	3.2	61
89	Mechanisms of platelet and leukocyte recruitment in experimental colitis. American Journal of Physiology - Renal Physiology, 2007, 293, G1054-G1060.	3.4	60

90 The Gastrointestinal Circulation: Physiology and Pathophysiology. , 2015, 5, 1541-1583.

60

#	Article	IF	CITATIONS
91	Immunotargeting of catalase to ACE or ICAM-1 protects perfused rat lungs against oxidative stress. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L806-L817.	2.9	56
92	Endothelial Expression of Vascular Cell Adhesion Moleculeâ€1 Correlates with Metastatic Pattern in Spontaneous Melanoma. Microcirculation, 2001, 8, 335-345.	1.8	56
93	The Evolving Paradigm for Blood Cellâ€Endothelial Cell Interactions in the Cerebral Microcirculation. Microcirculation, 2007, 14, 667-681.	1.8	55
94	Reperfusion injury is not affected by blockade of P-selectin in the diabetic mouse heart. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H763-H769.	3.2	54
95	Role of adhesion molecules in vascular regulation and damage. Current Hypertension Reports, 2000, 2, 78-83.	3.5	54
96	Regulation of Endothelial Cell Adhesion Molecule Expression in an Experimental Model of Cerebral Malaria. Microcirculation, 2002, 9, 463-470.	1.8	54
97	Simvastatin Attenuates Stroke-induced Splenic Atrophy and Lung Susceptibility to Spontaneous Bacterial Infection in Mice. Stroke, 2013, 44, 1135-1143.	2.0	54
98	Hypercoagulability and Platelet Abnormalities in Inflammatory Bowel Disease. Seminars in Thrombosis and Hemostasis, 2015, 41, 582-589.	2.7	54
99	Platelet Recruitment in the Murine Hepatic Microvasculature During Experimental Sepsis: Role of Neutrophils. Microcirculation, 2006, 13, 89-97.	1.8	52
100	Role of Blood- and Tissue-Associated Inducible Nitric-Oxide Synthase in Colonic Inflammation. American Journal of Pathology, 2007, 170, 490-496.	3.8	51
101	T‣ymphocytes Contribute to Hepatic Leukostasis and Hypoxic Stress Induced by Gut Ischemiaâ€Reperfusion. Microcirculation, 1999, 6, 267-280.	1.8	50
102	Novel Role of T Cells and IL-6 (Interleukin-6) in Angiotensin II–Induced Microvascular Dysfunction. Hypertension, 2019, 73, 829-838.	2.7	49
103	Endothelial cell monolayers as a tool for studying microvascular pathophysiology. American Journal of Physiology - Renal Physiology, 1997, 273, G1189-G1199.	3.4	48
104	Angiotensin II type 1 receptor signaling contributes to platelet-leukocyte-endothelial cell interactions in the cerebral microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2306-H2315.	3.2	48
105	CD40/CD40L contributes to hypercholesterolemia-induced microvascular inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H689-H697.	3.2	48
106	Reperfusion therapy—What's with the obstructed, leaky and broken capillaries?. Pathophysiology, 2017, 24, 213-228.	2.2	48
107	Platelet-associated NAD(P)H oxidase contributes to the thrombogenic phenotype induced by hypercholesterolemia. Free Radical Biology and Medicine, 2007, 43, 22-30.	2.9	47
108	Selectin-Mediated Recruitment of Bone Marrow Stromal Cells in the Postischemic Cerebral Microvasculature. Stroke, 2011, 42, 806-811.	2.0	47

#	Article	IF	CITATIONS
109	Transgenic Mice With Increased Copper/Zinc–Superoxide Dismutase Activity Are Resistant to Hepatic Leukostasis and Capillary No-Reflow After Gut Ischemia/Reperfusion. Circulation Research, 1998, 83, 691-696.	4.5	46
110	Coronary endothelial P-selectin in pathogenesis of myocardial ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1865-H1872.	3.2	46
111	Role of tumor necrosis factor- \hat{l}_{\pm} in the extraintestinal thrombosis associated with colonic inflammation. Inflammatory Bowel Diseases, 2011, 17, 2217-2223.	1.9	46
112	Ischemia-Reperfusion: Mechanisms of Microvascular Dysfunction and the Influence of Risk Factors for Cardiovascular Disease. Microcirculation, 1999, 6, 167-178.	1.8	44
113	Low-Density Lipoprotein Receptor Knockout Mice Exhibit Exaggerated Microvascular Responses to Inflammatory Stimuli. Circulation Research, 1997, 81, 274-281.	4.5	44
114	Regulation of E-selectin expression in postischemic intestinal microvasculature. American Journal of Physiology - Renal Physiology, 2000, 278, G878-G885.	3.4	43
115	Hypertonic Saline and the Cerebral Microcirculation in Obese Septic Mice. Microcirculation, 2007, 14, 223-231.	1.8	43
116	T-lymphocytes modulate the microvascular and inflammatory responses to intestinal ischemia-reperfusion. Microcirculation, 2002, 9, 99-109.	1.8	42
117	Modulation of P-selectin expression in the postischemic intestinal microvasculature. American Journal of Physiology - Renal Physiology, 1997, 273, G1326-G1332.	3.4	41
118	Role of endotoxin in the expression of endothelial selectins after cecal ligation and perforation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R1140-R1147.	1.8	41
119	Hypercholesterolemia Enhances Oxidant Production in Mesenteric Venules Exposed to Ischemia/Reperfusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1583-1588.	2.4	39
120	Role of Interferon-γ in Hypercholesterolemia-Induced Leukocyte–Endothelial Cell Adhesion. Circulation, 2003, 107, 2140-2145.	1.6	39
121	Soluble selectins and ICAM-1 modulate neutrophil-endothelial adhesion and diapedesis in vitro. Inflammation, 1997, 21, 313-324.	3.8	38
122	Enteric microflora contribute to constitutive ICAM-1 expression on vascular endothelial cells. American Journal of Physiology - Renal Physiology, 2000, 279, G186-G191.	3.4	38
123	Molecular determinants of the prothrombogenic phenotype assumed by inflamed colonic venules. American Journal of Physiology - Renal Physiology, 2005, 288, G920-G926.	3.4	37
124	BOTH ISCHEMIC AND PHARMACOLOGICAL PRECONDITIONING DECREASE HEPATIC LEUKOCYTE/ENDOTHELIAL CELL INTERACTIONS 1. Transplantation, 2000, 69, 300.	1.0	37
125	Differential Expression of Plateletâ€Endothelial Cell Adhesion Moleculeâ€1 (PECAMâ€1) in Murine Tissues. Microcirculation, 1998, 5, 179-188.	1.8	36
126	P-selectin-dependent leukocyte recruitment and intestinal mucosal injury induced by lactoferrin. Journal of Leukocyte Biology, 1994, 55, 771-777.	3.3	35

#	Article	IF	CITATIONS
127	Endothelial cell adhesion molecule expression in gene-targeted mice. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H1903-H1908.	3.2	35
128	Role of Platelets in Hypercholesterolemia-Induced Leukocyte Recruitment and Arteriolar Dysfunction. Microcirculation, 2006, 13, 377-388.	1.8	35
129	Glucocorticoids Inhibit the Cerebral Microvascular Dysfunction Associated with Sepsis in Obese Mice. Microcirculation, 2006, 13, 477-487.	1.8	35
130	Endothelin-1-induced PMN infiltration and mucosal dysfunction in the rat small intestine. American Journal of Physiology - Renal Physiology, 2000, 279, G483-G491.	3.4	34
131	Differential Expression of E- and P-Selectin in the Microvasculature of Sickle Cell Transgenic Mice. Microcirculation, 2004, 11, 377-385.	1.8	34
132	Critical differences between two classical surgical approaches for middle cerebral artery occlusion-induced stroke in mice. Journal of Neuroscience Methods, 2015, 249, 99-105.	2.5	32
133	Endothelial Cells Exposed to Anoxia/Reoxygenation Are Hyperadhesive to T″ymphocytes: Kinetics and Molecular Mechanisms. Microcirculation, 2000, 7, 13-23.	1.8	31
134	Hypercholesterolemia Promotes Leukocyte-Dependent Platelet Adhesion in Murine Postcapillary Venules. Microcirculation, 2004, 11, 597-603.	1.8	28
135	Granulocyte turnover in the feline intestine. Inflammation, 1992, 16, 549-559.	3.8	27
136	Differential expression and regulation of murine CD40 in regional vascular beds. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H631-H639.	3.2	27
137	HMG-CoA reductase inhibitor attenuates platelet adhesion in intestinal venules of hypercholesterolemic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1402-H1407.	3.2	26
138	Quantification of murine endothelial cell adhesion molecules in solid tumors. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1156-H1166.	3.2	25
139	Induction of neuro-protective/regenerative genes in stem cells infiltrating post-ischemic brain tissue. Experimental & Translational Stroke Medicine, 2010, 2, 11.	3.2	25
140	Endothelial barrier function in preeclampsia. Frontiers in Bioscience - Landmark, 2007, 12, 2412.	3.0	25
141	II. Leukocyte-endothelial cell adhesion in the digestive system. American Journal of Physiology - Renal Physiology, 1997, 273, G982-G986.	3.4	24
142	Expression of Endothelial Cell Adhesion Molecules in Neovascularized Tissue. Microcirculation, 2000, 7, 249-258.	1.8	24
143	The Role of T-Lymphocytes in Hypercholesterolemia-Induced Leukocyte-Endothelial Interactions. Microcirculation, 2002, 9, 407-417.	1.8	24
144	Monocyte Rolling in Early Atherogenesis. Circulation Research, 1999, 84, 1353-1355.	4.5	23

#	Article	IF	CITATIONS
145	Polynitroxylαα-hemoglobin (PNH) inhibits peroxide and superoxide-mediated neutrophil adherence to human endothelial cells. Free Radical Research, 1999, 31, 53-58.	3.3	23
146	Oxidative Stress During Platelet-Activating Factor-Induced Microvascular Dysfunction. Microcirculation, 1996, 3, 401-410.	1.8	22
147	Role of endotoxin in intestinal reperfusion-induced expression of E-selectin. American Journal of Physiology - Renal Physiology, 1999, 276, G479-G484.	3.4	21
148	Impaired mesenteric leukocyte recruitment in experimental portal hypertension in the rat. Hepatology, 1999, 30, 445-453.	7.3	21
149	Lymphocyte-derived interferon-γ mediates ischemia-reperfusion-induced leukocyte and platelet adhesion in intestinal microcirculation. American Journal of Physiology - Renal Physiology, 2009, 296, G659-G663.	3.4	21
150	Role of blood cell-associated angiotensin II type 1 receptors in the cerebral microvascular response to ischemic stroke during angiotensin-induced hypertension. Experimental & Translational Stroke Medicine, 2011, 3, 15.	3.2	21
151	REDUCTION OF LEUKOCYTE ADHERENCE AND EMIGRATION BY CYCLOSPORINE AND L683,590 (FK506) IN POSTCAPILLARY VENULES. Transplantation, 1992, 54, 686-689.	1.0	20
152	Intestinal Blood Flow and Oxygen Consumption: Responses to Hemorrhage in the Developing Piglet. Pediatric Research, 1989, 26, 102-105.	2.3	19
153	Circadian Rhythm of Ornithine Decarboxylase Activity in Small Intestine of Fasted Rats. Experimental Biology and Medicine, 1992, 200, 409-413.	2.4	19
154	Leukocyte Adhesion and Emigration in Inflammation. Annals of the New York Academy of Sciences, 1992, 664, 388-399.	3.8	19
155	Mechanisms responsible for enhanced inflammatory response to ischemia-reperfusion in diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H1773-H1781.	3.2	19
156	Interleukin-6 mediates enhanced thrombus development in cerebral arterioles following a brief period of focal brain ischemia. Experimental Neurology, 2015, 271, 351-357.	4.1	19
157	Ischemia-reperfusion induced microvascular responses in LDL-receptor â^'/â^' mice. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H1647-H1654.	3.2	16
158	Endothelial expression of selectins during endotoxin preconditioning. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R2015-R2021.	1.8	16
159	T-Cell–Derived Interferon-γ Contributes to Arteriolar Dysfunction During Acute Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1998-2004.	2.4	16
160	T-Lymphocytes Contribute to Hepatic Leukostasis and Hypoxic Stress Induced by Gut Ischemia-Reperfusion. Microcirculation, 1999, 6, 267-280.	1.8	16
161	Oxidative Stress Promotes Blood Cell-Endothelial Cell Interactions in the Microcirculation. Cardiovascular Toxicology, 2002, 2, 165-180.	2.7	16
162	Nitric oxide modulates gut ischemia-reperfusion-induced P-selectin expression in murine liver. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H520-H526.	3.2	15

#	Article	IF	CITATIONS
163	A critical role for both CD40 and VLA5 in angiotensin Il–mediated thrombosis and inflammation. FASEB Journal, 2018, 32, 3448-3456.	0.5	15
164	Angiotensin II type 1 receptors and the intestinal microvascular dysfunction induced by ischemia and reperfusion. American Journal of Physiology - Renal Physiology, 2006, 290, G1203-G1210.	3.4	14
165	Ischemia-Reperfusion: Mechanisms of Microvascular Dysfunction and the Influence of Risk Factors for Cardiovascular Disease. Microcirculation, 1999, 6, 167-178.	1.8	14
166	Oxidant-Induced Increases in Mucosal Permeability in Developing Piglets. Pediatric Research, 1990, 28, 28-29.	2.3	13
167	Transient ischemia elicits a sustained enhancement of thrombus development in the cerebral microvasculature: Effects of anti-thrombotic therapy. Experimental Neurology, 2014, 261, 417-423.	4.1	13
168	Role of interleukin 12 in hypercholesterolemia-induced inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2623-H2629.	3.2	12
169	Hypercholesterolemia: its impact on ischemia-reperfusion injury. Expert Review of Cardiovascular Therapy, 2005, 3, 1061-1070.	1.5	12
170	Brain Endothelial Adhesion Molecule Expression in Experimental Colitis. Microcirculation, 2001, 8, 105-114.	1.8	11
171	Ethanol-Induced Leukocyte Adherence and Albumin Leakage in Rat Mesenteric Venules: Role of CD18/Intercellular Adhesion Molecule-1. Alcoholism: Clinical and Experimental Research, 1996, 20, 347A-349A.	2.4	10
172	Mechanisms of Lactoferrin-induced Leukocyte-Endothelial Cell Adhesion in Postcapillary Venules. Microcirculation, 1994, 1, 27-34.	1.8	9
173	Role of ICAM-1 in chronic ethanol consumption-enhanced liver injury after gut ischemia-reperfusion in rats. American Journal of Physiology - Renal Physiology, 2002, 283, G537-G543.	3.4	9
174	Mediators of CD18/P-selectin-dependent constriction of venule-paired arterioles in hypercholesterolemia. Microvascular Research, 2007, 73, 150-155.	2.5	8
175	Hepatic microvascular responses to ischemia-reperfusion in low-density lipoprotein receptor knockout mice. American Journal of Physiology - Renal Physiology, 2000, 279, G1257-G1264.	3.4	7
176	Endothelial Expression of Vascular Cell Adhesion Molecule-1 Correlates with Metastatic Pattern in Spontaneous Melanoma. Microcirculation, 2001, 8, 335-345.	1.8	7
177	Hepatic microcirculation in murine sepsis: role of lymphocytes. Pediatric Surgery International, 2008, 24, 13-20.	1.4	6
178	Protective and detrimental effects of neuroectodermal cell–derived tissue factor in mouse models of stroke. JCI Insight, 2016, 1, .	5.0	6
179	Hypercholesterolemia blunts the oxidative stress elicited by hypertension in venules through angiotensin II type-2 receptors. Microvascular Research, 2016, 105, 54-60.	2.5	5
180	Intestinal microcirculation in the neonate. Pediatric Surgery International, 1992, 7, 408.	1.4	4

#	Article	IF	CITATIONS
181	Lymphocyte Trafficking Mediated by Vascular Adhesion Protein-1. Circulation Research, 2000, 86, 1190-1192.	4.5	4
182	Reactive oxygen species and vascular cell adhesion molecule-1 in distant organ failure following bile duct obstruction in mice. Digestive Diseases and Sciences, 2002, 47, 607-613.	2.3	4
183	Pathophysiology of ischaemia–reperfusion injury. , 2000, 190, 255.		4
184	Gastrointestinal Blood Flow. , 0, , 540-566.		2
185	Recruitment of Inflammatory and Immune Cells in the Gut: Physiology and Pathophysiology. , 2006, , 1137-1162.		2
186	Endothelial Expression of Vascular Cell Adhesion Molecule-1 Correlates with Metastatic Pattern in Spontaneous Melanoma. Microcirculation, 2001, 8, 335-345.	1.8	2
187	Intestinal Ischemia and Reperfusion: Consequences and Mechanisms. , 2015, , 3535-3553.		1
188	Analysis of extracellular factors secreted by bone marrow stromal cells residing in the infarcted region of the brain after ischemic stroke. FASEB Journal, 2008, 22, 97-97.	0.5	1
189	Hepcidin and Ferroportin in Different Murine Models of Obesity Challenged with Polymicrobial Sepsis. FASEB Journal, 2013, 27, 947.2.	0.5	1
190	In Memorium Arthur C. Guyton, md (1919-2003). Microcirculation, 2003, 10, 381-382.	1.8	0
191	Role of the microcirculation in chronic gut inflammation. , 2003, , 177-196.		0
192	Microvascular Aspects of Ischemia-Reperfusion Injury. , 2005, , 181-192.		0
193	Gastrointestinal and Liver Microcirculations. , 2008, , 684-711.		0
194	Platelet-Derived RANTES Mediates Hypercholesterolemia-Induced Superoxide Production and Endothelial Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, e6.	2.4	0
195	Recruitment of Inflammatory and Immune Cells in the Gut. , 2012, , 2101-2128.		0
196	Intestinal Ischemia and Reperfusion: Consequences and Mechanisms. , 2014, , 1-22.		0
197	Inflammation: The Role of Endothelial Cells. , 2017, , 457-476.		0
198	Physiology and Pathophysiology of Digestion, Part 1. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2018, 10, i-90.	0.3	0

#	Article	IF	CITATIONS
199	Risk Factors for Cardiovascular Disease Amplify Reperfusion-Induced Inflammation and Microvascular Dysfunction. , 2003, , 333-342.		0
200	Role of the microcirculation in chronic gut inflammation. , 2003, , 177-196.		0
201	CD40â€dependent inflammatory and thrombogenic responses to soluble CD40 ligand in the microvasculature. FASEB Journal, 2006, 20, A704.	0.5	0
202	Role of the coagulation system in experimental colitis. FASEB Journal, 2006, 20, A704.	0.5	0
203	Hypoxia/Reoxygenation Induced Blood Cell Adhesion in Cerebral Venules of Sickle Cell Transgenic (β S) Mice: The Two Faces of eNOS. FASEB Journal, 2006, 20, LB22.	0.5	0
204	Immune Cellâ€Mediated Vasomotor Dysfunction in Large Vessels During Hypercholesterolemia. FASEB Journal, 2006, 20, LB11.	0.5	0
205	The hepatic microvascular alterations in polymicrobial sepsis are not mediated by bacterial endotoxin FASEB Journal, 2006, 20, A704.	0.5	0
206	Intestinal microvascular responses to polymicrobial sepsis in prediabetic obese mice. FASEB Journal, 2007, 21, .	0.5	0
207	Role of RANTES in the pathogenesis of experimental colitis. FASEB Journal, 2007, 21, A849.	0.5	0
208	The Role of Plateletâ€Ðerived RANTES in Large Vessel Dysfunction Associated with Acute Hypercholesterolemia. FASEB Journal, 2007, 21, A852.	0.5	0
209	T‣ymphocyteâ€derived interferonâ€Î³ (IFNâ€Ì³) mediates inflammatory responses to hypercholesterolemia, but not the primary source of elevated plasma IFNâ€I³. FASEB Journal, 2007, 21, A850.	is 0.5	0
210	Immuneâ€mediated vasomotor dysfunction and ROS production during hypercholesterolemia occurs through an IFNâ€Î³â€dependent signaling pathway. FASEB Journal, 2008, 22, 1148.10.	0.5	0
211	Role of the protein C pathway in the extraâ€intestinal thrombosis associated with inflammatory bowel disease. FASEB Journal, 2008, 22, 924.21.	0.5	0
212	Cerebral microvascular dysfunction in angiotensin IIâ€induced hypertension. FASEB Journal, 2008, 22, 731.14.	0.5	0
213	Cerebral microvascular dysfunction and inflammation following venous sinus thrombosis in mice FASEB Journal, 2008, 22, 1151.6.	0.5	0
214	Role of CD40 D40L signaling in the extraâ€intestinal thrombosis associated with colonic inflammation. FASEB Journal, 2008, 22, 924.8.	0.5	0
215	Angiotensin II typeâ€1 receptor antagonism attenuates the hypercholesterolemiaâ€induced vascular dysfunction in mouse aorta. FASEB Journal, 2009, 23, 774.1.	0.5	0
216	Timeâ€dependency of angiotensin II mediated vasomotor dysfunction. FASEB Journal, 2009, 23, 774.3.	0.5	0

#	ARTICLE	IF	CITATIONS
217	Angiotensin (Ang) II mediated thrombosis in cremaster muscle microvessels FASEB Journal, 2009, 23, 1017.10.	0.5	0
218	Angiotensin Ilâ€induced microvascular responses in mouse brain. FASEB Journal, 2009, 23, 762.10.	0.5	0
219	Sickle Cell transgenic mice demonstrate a proâ€thrombogenic phenotype. FASEB Journal, 2009, 23, 613.29.	0.5	0
220	Bone marrow stromal cells isolated from the infarcted region of the postischemic brain secrete neuroprotective and angiogenic factors. FASEB Journal, 2009, 23, 614.13.	0.5	0
221	Proâ€inflammatory cytokines mediate the extraâ€intestinal thrombus formation associated with inflammatory bowel disease (IBD). FASEB Journal, 2009, 23, 593.2.	0.5	0
222	Role of AT1â€receptors in hypercholesterolemiaâ€induced thrombosis FASEB Journal, 2009, 23, 593.16.	0.5	0
223	Tâ€lymphocytes contribute to angiotensin IIâ€mediated thrombosis in cremaster muscle arterioles. FASEB Journal, 2010, 24, 589.3.	0.5	0
224	Blood cellâ€associated angiotensin II typeâ€1 receptors and gp91phox mediate the inflammatory and thrombogenic responses elicited by chronic angiotensin II administration. FASEB Journal, 2012, 26, 680.15.	0.5	0
225	Tâ€cell dependent ILâ€6 signaling mediates angiotensin Ilâ€enhanced microvascular thrombosis. FASEB Journal, 2012, 26, 681.14.	0.5	0
226	Enhanced thrombus development after transient cerebral ischemia. FASEB Journal, 2013, 27, lb691.	0.5	0
227	Vascular Inflammation in Ischemic Stroke: Adhesion Receptors Controlling Leukocyte–Endothelial Interactions. , 2014, , 27-51.		0
228	REACTIVE OXYGEN METABOLITES: MODULATORS OF REPERFUSION-INDUCED NEUTROPHIL INFILTRATION. , 1991, , 694-699.		0
229	Control of leukocyte adhesion and activation in ischemiareperfusion injury. , 1999, , 221-238.		0