
Mark R Hinder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10479395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of tDCS over right inferior frontal gyrus and pre-supplementary motor area on perceptual decision-making and response inhibition: A healthy ageing perspective. Neurobiology of Aging, 2022, 109, 11-21.	3.1	7
2	Response bias reveals the role of interhemispheric inhibitory networks in movement preparation and execution. Neuropsychologia, 2022, 165, 108120.	1.6	8
3	Cognitive inhibition tasks interfere with dual-task walking and increase prefrontal cortical activity more than working memory tasks in young and older adults. Gait and Posture, 2022, 95, 186-191.	1.4	12
4	Functional Near-infrared Spectroscopy Reveals the Compensatory Potential of Pre-frontal Cortical Activity for Standing Balance in Young and Older Adults. Neuroscience, 2021, 452, 208-218.	2.3	29
5	Timing-specific effects of single-session M1 anodal tDCS on motor sequence retention in healthy older adults. NeuroImage Reports, 2021, 1, 100009.	1.0	4
6	Significant cognitive decline in Parkinson's disease exacerbates the reliance on visual feedback during upper limb reaches. Neuropsychologia, 2021, 157, 107885.	1.6	2
7	Subthreshold repetitive transcranial magnetic stimulation drives structural synaptic plasticity in the young and aged motor cortex. Brain Stimulation, 2021, 14, 1498-1507.	1.6	19
8	Data-driven selection of conference speakers based on scientific impact to achieve gender parity. PLoS ONE, 2019, 14, e0220481.	2.5	16
9	Modulating functional connectivity with non-invasive brain stimulation for the investigation and alleviation of age-associated declines in response inhibition: A narrative review. NeuroImage, 2019, 185, 490-512.	4.2	21
10	Low intensity repetitive transcranial magnetic stimulation modulates skilled motor learning in adult mice. Scientific Reports, 2018, 8, 4016.	3.3	23
11	Distinct modulation of interhemispheric inhibitory mechanisms during movement preparation reveals the influence of cognition on action control. Cortex, 2018, 99, 13-29.	2.4	17
12	Preconditioning tDCS facilitates subsequent tDCS effect on skill acquisition in older adults. Neurobiology of Aging, 2017, 51, 31-42.	3.1	50
13	Response to "Response to Hoy, â€ [~] Gender imbalance and brain stimulation conferences: We have a problem and it is everyone's problem'― Brain Stimulation, 2017, 10, 158-159.	1.6	6
14	Influence of Cognitive Functioning on Age-Related Performance Declines in Visuospatial Sequence Learning. Frontiers in Psychology, 2017, 8, 919.	2.1	2
15	Response: "Commentary: Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspectiveâ€. Frontiers in Aging Neuroscience, 2016, 8, 28.	3.4	1
16	Construction and Evaluation of Rodent-Specific rTMS Coils. Frontiers in Neural Circuits, 2016, 10, 47.	2.8	70
17	Motor learning and cross-limb transfer rely upon distinct neural adaptation processes. Journal of Neurophysiology, 2016, 116, 575-586.	1.8	15
18	Facilitatory non-invasive brain stimulation in older adults: the effect of stimulation type and duration on the induction of motor cortex plasticity. Experimental Brain Research, 2016, 234, 3411-3423.	1.5	26

Mark R Hinder

#	Article	IF	CITATIONS
19	Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective. Frontiers in Aging Neuroscience, 2015, 7, 107.	3.4	60
20	Age-Specific Effects of Mirror-Muscle Activity on Cross-Limb Adaptations Under Mirror and Non-Mirror Visual Feedback Conditions. Frontiers in Aging Neuroscience, 2015, 7, 222.	3.4	8
21	Reversed Effects of Intermittent Theta Burst Stimulation following Motor Training That Vary as a Function of Training-Induced Changes in Corticospinal Excitability. Neural Plasticity, 2015, 2015, 1-5.	2.2	6
22	The Influence of Mirror-Visual Feedback on Training-Induced Motor Performance Gains in the Untrained Hand. PLoS ONE, 2015, 10, e0141828.	2.5	9
23	Delayed plastic responses to anodal tDCS in older adults. Frontiers in Aging Neuroscience, 2014, 6, 115.	3.4	104
24	Visual feedback-related changes in ipsilateral cortical excitability during unimanual movement: Implications for mirror therapy. Neuropsychological Rehabilitation, 2014, 24, 936-957.	1.6	19
25	Inter- and Intra-individual Variability Following Intermittent Theta Burst Stimulation: Implications for Rehabilitation and Recovery. Brain Stimulation, 2014, 7, 365-371.	1.6	163
26	Noninvasive brain stimulation can elucidate and interact with the mechanisms underlying motor learning and retention: implications for rehabilitation. Journal of Neurophysiology, 2014, 111, 897-899.	1.8	5
27	Slow and steady is not as easy as it sounds: interlimb coordination at slow speed is associated with elevated attentional demand especially in older adults. Experimental Brain Research, 2013, 227, 289-300.	1.5	20
28	Inter-limb transfer of ballistic motor skill following non-dominant limb training in young and older adults. Experimental Brain Research, 2013, 227, 19-29.	1.5	36
29	Transfer of ballistic motor skill between bilateral and unilateral contexts in young and older adults: neural adaptations and behavioral implications. Journal of Neurophysiology, 2013, 109, 2963-2971.	1.8	13
30	Functional role of left PMd and left M1 during preparation and execution of left hand movements in older adults. Journal of Neurophysiology, 2013, 110, 1062-1069.	1.8	18
31	Interhemispheric connectivity between distinct motor regions as a window into bimanual coordination. Journal of Neurophysiology, 2012, 107, 1791-1794.	1.8	17
32	Age-related Differences in Corticomotor Excitability and Inhibitory Processes during a Visuomotor RT Task. Journal of Cognitive Neuroscience, 2012, 24, 1253-1263.	2.3	54
33	Age-related differences in corticospinal excitability and inhibition during coordination of upper and lower limbs. Neurobiology of Aging, 2012, 33, 1484.e1-1484.e14.	3.1	68
34	Primary motor cortex involvement in initial learning during visuomotor adaptation. Neuropsychologia, 2012, 50, 2515-2523.	1.6	13
35	Premotor-Motor Interhemispheric Inhibition Is Released during Movement Initiation in Older but Not Young Adults. PLoS ONE, 2012, 7, e52573.	2.5	47
36	Absence of cross-limb transfer of performance gains following ballistic motor practice in older adults. Journal of Applied Physiology, 2011, 110, 166-175.	2.5	75

Mark R Hinder

#	Article	IF	CITATIONS
37	Long-Lasting Contralateral Motor Cortex Excitability Is Increased by Unilateral Hand Movement That Triggers Electrical Stimulation of Opposite Homologous Muscles. Neurorehabilitation and Neural Repair, 2011, 25, 521-530.	2.9	11
38	Real-time error detection but not error correction drives automatic visuomotor adaptation. Experimental Brain Research, 2010, 201, 191-207.	1.5	59
39	The effect of ballistic thumb contractions on the excitability of the ipsilateral motor cortex. Experimental Brain Research, 2010, 201, 229-238.	1.5	25
40	Unilateral contractions modulate interhemispheric inhibition most strongly and most adaptively in the homologous muscle of the contralateral limb. Experimental Brain Research, 2010, 205, 423-433.	1.5	63
41	The ipsilateral motor cortex contributes to crossâ€limb transfer of performance gains after ballistic motor practice. Journal of Physiology, 2010, 588, 201-212.	2.9	152
42	The Synergistic Organization of Muscle Recruitment Constrains Visuomotor Adaptation. Journal of Neurophysiology, 2009, 101, 2263-2269.	1.8	28
43	The efficacy of colour cues in facilitating adaptation to opposing visuomotor rotations. Experimental Brain Research, 2008, 191, 143-155.	1.5	23
44	The contribution of visual feedback to visuomotor adaptation: How much and when?. Brain Research, 2008, 1197, 123-134.	2.2	80
45	Rapid Adaptation to Scaled Changes of the Mechanical Environment. Journal of Neurophysiology, 2007, 98, 3072-3080.	1.8	7
46	The interference effects of non-rotated versus counter-rotated trials in visuomotor adaptation. Experimental Brain Research, 2007, 180, 629-640.	1.5	29
47	Novel strategies in feedforward adaptation to a position-dependent perturbation. Experimental Brain Research, 2005, 165, 239-249.	1.5	15
48	The Case for an Internal Dynamics Model versus Equilibrium Point Control in Human Movement. Journal of Physiology, 2003, 549, 953-963.	2.9	85