Bao-Sen Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10479151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conformal frequency conversion for arbitrary vectorial structured light. Optica, 2022, 9, 187.	9.3	27
2	Advantages of the frequency-conversion technique in quantum interference. Physical Review A, 2022, 105, .	2.5	4
3	Quantum interface for high-dimensional quantum states encoded in an orbital angular momentum space. Fundamental Research, 2021, 1, 88-90.	3.3	1
4	Fourth-harmonic generation of orbital angular momentum light with cascaded quasi-phase matching crystals. Optics Letters, 2021, 46, 158.	3.3	4
5	Synchronized resistance of inhomogeneous magnetically induced dephasing of an image stored in a cold atomic ensemble. Physical Review A, 2021, 103, .	2.5	2
6	Frequency up-conversion of an infrared image via a flat-top pump beam. Optics Communications, 2020, 460, 125143.	2.1	7
7	Experimental demonstration of Einstein-Podolsky-Rosen entanglement in rotating coordinate space. Science Bulletin, 2020, 65, 280-285.	9.0	5
8	Radial modal transitions of Laguerre-Gauss modes during parametric up-conversion: Towards the full-field selection rule of spatial modes. Physical Review A, 2020, 101, .	2.5	29
9	Spatial-Polarization-Independent Parametric Up-Conversion of Vectorially Structured Light. Physical Review Applied, 2020, 13, .	3.8	26
10	Roadmap on quantum light spectroscopy. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 072002.	1.5	101
11	Entangled qutrits generated in four-wave mixing without post-selection. Optics Express, 2020, 28, 11538.	3.4	7
12	Extra-cavity-enhanced difference-frequency generation at 163  µm. Journal of the Optical Society of America Β: Optical Physics, 2020, 37, 1367.	2.1	3
13	Einstein-Podolsky-Rosen entanglement between separated atomic ensembles. Physical Review A, 2019, 100, .	2.5	4
14	Broad spiral bandwidth of orbital angular momentum interface between photon and memory. Communications Physics, 2019, 2, .	5.3	5
15	Tailoring Nonlinear Processes of Orbital Angular Momentum with Dispersion Engineering in Vortex Fibers. Physical Review Applied, 2019, 12, .	3.8	5
16	Dynamic tomography of the spin-orbit coupling in nonlinear optics. Physical Review A, 2019, 99, .	2.5	13
17	Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop. Optics Letters, 2019, 44, 219.	3.3	22
18	Frequency doubling of twisted light independent of the integer topological charge. OSA Continuum, 2019, 2, 470.	1.8	7

#	Article	IF	CITATIONS
19	Raman protocol-based quantum memories. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 034203.	0.5	2
20	All optical actively tunable quantum signal de-multiplexer based on sum frequency generation. , 2019, ,		0
21	Fragmentation of twisted light in photon–phonon nonlinear propagation. Applied Physics Letters, 2018, 112, .	3.3	18
22	Quantum storage of orbital angular momentum entanglement in cold atomic ensembles. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 032004.	1.5	20
23	On-chip generation of time-and wavelength-division multiplexed multiple time-bin entanglement. Optics Express, 2018, 26, 12912.	3.4	19
24	Quantum frequency conversion for multiplexed entangled states generated from micro-ring silicon chip. Optics Express, 2018, 26, 28429.	3.4	5
25	All optical actively tunable quantum signal de-multiplexer based on sum frequency generation. , 2018, ,		0
26	Coherent frequency bridge between visible and telecommunications band for vortex light. , 2018, , .		0
27	Superresolving Phase Measurement with Short-Wavelength NOON States by Quantum Frequency Up-Conversion. Physical Review Applied, 2017, 7, .	3.8	17
28	On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire. Physical Review Applied, 2017, 7, .	3.8	37
29	Quantum Secure Direct Communication with Quantum Memory. Physical Review Letters, 2017, 118, 220501.	7.8	460
30	Two-color hyper-entangled photon pairs generation in a cold ^85Rb atomic ensemble. Optics Express, 2017, 25, 10145.	3.4	11
31	Coherent frequency bridge between visible and telecommunications band for vortex light. Optics Express, 2017, 25, 24290.	3.4	13
32	Quantum frequency up-conversion of orbital angular momentum entanglement states. , 2017, , .		0
33	Quantum frequency up-conversion of orbital angular momentum entanglement states. , 2017, , .		0
34	Orbital angular momentum photonic quantum interface. Light: Science and Applications, 2016, 5, e16019-e16019.	16.6	82
35	Multiplexed entangled photon-pair sources for all-fiber quantum networks. Physical Review A, 2016, 94, .	2.5	29
36	Orbital Angular Momentum-Entanglement Frequency Transducer. Physical Review Letters, 2016, 117, 103601.	7.8	70

#	Article	IF	CITATIONS
37	Non-destructive splitter of twisted light based on modes splitting in a ring cavity. Optics Express, 2016, 24, 2166.	3.4	1
38	Storing a single photon as a spin wave entangled with a flying photon in the telecommunication bandwidth. Physical Review A, 2016, 93, .	2.5	12
39	High-dimensional entanglement between distant atomic-ensemble memories. Light: Science and Applications, 2016, 5, e16157-e16157.	16.6	64
40	Dynamic mode evolution and phase transition of twisted light in nonlinear process. Journal of Modern Optics, 2016, 63, 2271-2278.	1.3	11
41	Quantum frequency up-conversion of heralded single photon orbital angular momentum states. , 2016, , .		0
42	CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer. Optics Express, 2015, 23, 28792.	3.4	51
43	Raman quantum memory of photonic polarized entanglement. Nature Photonics, 2015, 9, 332-338.	31.4	115
44	Quantum Storage of Orbital Angular Momentum Entanglement in an Atomic Ensemble. Physical Review Letters, 2015, 114, 050502.	7.8	214
45	Sum frequency generation with two orbital angular momentum carrying laser beams. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 407.	2.1	60
46	Classical to quantum optical network link for orbital angular momentum-carrying light. Optics Express, 2015, 23, 18435.	3.4	14
47	Hybrid-cascaded generation of tripartite telecom photons using an atomic ensemble and a nonlinear waveguide. Optica, 2015, 2, 642.	9.3	46
48	Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals. Optics Express, 2014, 22, 20298.	3.4	62
49	Non-Classical Correlated Photon Pairs Generation via Cascade Transition of 5 S 1/2 –5 P 3/2 –5 D 5/2 in a Hot 85 Rb Atomic Vapor. Chinese Physics Letters, 2014, 31, 064208.	3.3	7
50	Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity. Optics Express, 2014, 22, 23673.	3.4	29
51	Cavity-enhanced bright photon pairs at telecom wavelengths with a triple-resonance configuration. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 128.	2.1	25
52	Optical vortex beam based optical fan for high-precision optical measurements and optical switching. Optics Letters, 2014, 39, 5098.	3.3	46
53	Toward high-dimensional-state quantum memory in a cold atomic ensemble. Physical Review A, 2014, 90,	2.5	24
54	Single-photon-level quantum image memory based on cold atomic ensembles. Nature Communications, 2013, 4, 2527.	12.8	179

#	Article	IF	CITATIONS
55	An ultra-broadband continuously-tunable polarization-entangled photon-pair source covering the C+L telecom bands based on a single type-II PPKTP crystal. Journal of Modern Optics, 2013, 60, 720-725.	1.3	9
56	Multimode image memory based on a cold atomic ensemble. Physical Review A, 2013, 87, .	2.5	26
57	Light storage based on four-wave mixing and electromagnetically induced transparency in cold atoms. Physical Review A, 2013, 87, .	2.5	32
58	Slow light via four-wave mixing in a hot rubidium vapour. Chinese Physics B, 2013, 22, 114203.	1.4	6
59	Actively switchable nondegenerate polarization-entangled photon-pair distribution in dense wave-division multiplexing. Physical Review A, 2013, 87, .	2.5	11
60	Multiple image storage and frequency conversion in a cold atomic ensemble. Physical Review A, 2013, 87, .	2.5	29
61	Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment. Optics Express, 2012, 20, 11433.	3.4	73
62	Two-Photon Atomic Coherence Effect of Transition 5 <i>S</i> _{1/2} â^'5 <i>P</i> _{3/2} â^'4 <i>D</i> _{5/2} (4 <i>D</i> _{3/2}) of ⁸⁵ Rb atoms. Chinese Physics Letters, 2012, 29, 024202.	3.3	2
63	Efficient infrared upconversion via a ladder-type atomic configuration. Journal of Modern Optics, 2012, 59, 1768-1771.	1.3	4
64	Experimental up-conversion of images. Physical Review A, 2012, 86, .	2.5	18
65	Realization of a Two-Dimensional Magneto-optical Trap with a High Optical Depth. Chinese Physics Letters, 2012, 29, 024205.	3.3	23
66	Two-color ghost interference with photon pairs generated in hot atoms. AIP Advances, 2012, 2, 032177.	1.3	8
67	Image transfer through two sequential four-wave-mixing processes in hot atomic vapor. Physical Review A, 2012, 85, .	2.5	21
68	Generation of narrow-band photon pairs for quantum memory. Optics Communications, 2010, 283, 2974-2977.	2.1	15
69	Observation of time correlation function of multimode two-photon pairs on a rubidium D_2 line. Optics Letters, 2008, 33, 2191.	3.3	26
70	Non-degenerated nonclassical photon pairs in a hot atomic ensemble. Optics Express, 2008, 16, 21708.	3.4	30
71	Entanglement of the orbital angular momentum states of the photon pairs generated in a hot atomic ensemble. Physical Review A, 2008, 78, .	2.5	70
72	Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer. Physical Review A, 2004, 69, .	2.5	88

#	Article	IF	CITATIONS
73	Remote state preparation of an entangled state. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4, 380-382.	1.4	80
74	Teleportation of an unknown state by W state. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 296, 161-164.	2.1	199
75	Reply to "Comment on: Teleportation of an unknown state by WÂstate― Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 300, 538-539.	2.1	14
76	Quantum key distribution and quantum authentication based on entangled state. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 281, 83-87.	2.1	55
77	Probabilistic teleportation of two-particle entangled state. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 268, 161-164.	2.1	171
78	Quantum cryptography based on interaction-free measurement. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 256, 109-112.	2.1	34
79	Generation and Manipulation of Nonclassical Photon Sources in Nonlinear Processes. , 0, , .		0