
Rajesh Dabur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1047884/publications.pdf Version: 2024-02-01

PAIESH DARIID

#	Article	IF	CITATIONS
1	Dynamics and Interplay between Autophagy and Ubiquitin-proteasome system Coordination in Skeletal Muscle Atrophy. Current Molecular Pharmacology, 2022, 15, 475-486.	1.5	6
2	Natural products: Potential therapeutic agents to prevent skeletal muscle atrophy. European Journal of Pharmacology, 2022, 925, 174995.	3.5	18
3	Magnoflorine prevent the skeletal muscle atrophy via Akt/mTOR/FoxO signal pathway and increase slow-MyHC production in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 2021, 267, 113510.	4.1	23
4	The dependency of autophagy and ubiquitin proteasome system during skeletal muscle atrophy. Biophysical Reviews, 2021, 13, 203-219.	3.2	17
5	Rapid Identification of 44 Steroids in Human Urine Samples using HPLC-ESI-QTOF-MS. Current Pharmaceutical Analysis, 2021, 17, .	0.6	0
6	Dynamics of Toll-like Receptors Signaling in Skeletal Muscle Atrophy. Current Medicinal Chemistry, 2021, 28, 5831-5846.	2.4	5
7	Intervention of Ayurvedic drug Tinospora cordifolia attenuates the metabolic alterations in hypertriglyceridemia: a pilot clinical trial. Journal of Diabetes and Metabolic Disorders, 2020, 19, 1367-1379.	1.9	8
8	S-allyl cysteine: A potential compound against skeletal muscle atrophy. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129676.	2.4	7
9	Tinospora cordifolia protects from skeletal muscle atrophy by alleviating oxidative stress and inflammation induced by sciatic denervation. Journal of Ethnopharmacology, 2020, 254, 112720.	4.1	19
10	Role of Pro-inflammatory Cytokines in Regulation of Skeletal Muscle Metabolism: A Systematic Review. Current Medicinal Chemistry, 2020, 27, 2161-2188.	2.4	45
11	Interactions of a medicinal climber Tinospora cordifolia with supportive interspecific plants trigger the modulation in its secondary metabolic profiles. Scientific Reports, 2019, 9, 14327.	3.3	9
12	Protective Effect of Hydroxytyrosol Against Oxidative Stress Mediated by Arsenic-Induced Neurotoxicity in Rats. Applied Biochemistry and Biotechnology, 2018, 186, 27-39.	2.9	39
13	Antimicrobial metabolites from Saraca asoca impairs the membrane transport system and quorum-sensing system in Pseudomonas aeruginosa. Archives of Microbiology, 2018, 200, 237-253.	2.2	6
14	Plasma metabolomics reveal the correlation of metabolic pathways and Prakritis of humans. Journal of Ayurveda and Integrative Medicine, 2018, 9, 113-122.	1.7	14
15	Facile Syntheses and Molecular-Docking of Novel Substituted 3,4-Dimethyl-1H-pyrrole-2-carboxamide/carbohydrazide Analogues with Antimicrobial and Antifungal Properties. Molecules, 2018, 23, 875.	3.8	5
16	Non-invasive Qualitative Urinary Metabolomic Profiling Discriminates Gut Microbiota Derived Metabolites in the Moderate and Chronic Alcoholic Cohorts. Current Pharmaceutical Biotechnology, 2018, 18, 1175-1189.	1.6	2
17	Identification of molecular pathways affected by treatment with heartwood water extract of Pterocarpus marsupium in MCF 7 cancer cell line. Journal of Herbal Medicine, 2017, 9, 42-52.	2.0	1
18	Detection and qualitative analysis of fatty acid amides in the urine of alcoholics using HPLC-QTOF-MS. Alcohol, 2016, 52, 71-78.	1.7	10

RAJESH DABUR

#	Article	IF	CITATIONS
19	Guduchi Sawras (Tinospora cordifolia): An Ayurvedic drug treatment modulates the impaired lipid metabolism in alcoholics through dopaminergic neurotransmission and anti-oxidant defense system. Biomedicine and Pharmacotherapy, 2016, 83, 1265-1277.	5.6	14
20	Efficacy and risk profile of anti-diabetic therapies: Conventional vs traditional drugs—A mechanistic revisit to understand their mode of action. Pharmacological Research, 2016, 113, 636-674.	7.1	53
21	Moderate alcohol consumption in chronic form enhances the synthesis of cholesterol and C-21 steroid hormones, while treatment with Tinospora cordifolia modulate these events in men. Steroids, 2016, 114, 68-77.	1.8	24
22	Protective Effects of <i>Tinospora cordifolia</i> on Hepatic and Gastrointestinal Toxicity Induced by Chronic and Moderate Alcoholism. Alcohol and Alcoholism, 2016, 51, 1-10.	1.6	25
23	Administration of Fresh Juice of Tinospora cordifolia Decreases Levels of Urinary Markers of Peroxisome Proliferator-Activated Receptors in Hyperlipidemic Patients. Indian Journal of Pharmaceutical Education and Research, 2016, 50, 451-457.	0.6	1
24	Pyrroleâ€coupled salicylimineâ€based fluorescence "turn on―probe for highly selective recognition of Zn ²⁺ ions in mixed aqueous media: Application in living cell imaging. Journal of Molecular Recognition, 2015, 28, 369-375.	2.1	17
25	Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacological Research, 2015, 99, 86-100.	7.1	139
26	Detection of New Human Metabolic Urinary Markers in Chronic Alcoholism and Their Reversal by Aqueous Extract of Tinospora cordifolia Stem. Alcohol and Alcoholism, 2015, 50, 271-281.	1.6	15
27	In Vitro Antifungal Activity and Probable Fungicidal Mechanism of Aqueous Extract of Barleria Grandiflora. Applied Biochemistry and Biotechnology, 2015, 175, 3571-3584.	2.9	15
28	Combination Therapy: The Propitious Rationale for Drug Development. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 53-67.	1.1	23
29	In Vivo Efficacy of a Synthetic Coumarin Derivative in a Murine Model of Aspergillosis. PLoS ONE, 2014, 9, e103039.	2.5	15
30	Quantitative analysis of catechins in Saraca asoca and correlation with antimicrobial activity. Journal of Pharmaceutical Analysis, 2013, 3, 421-428.	5.3	31
31	Synthesis, characterization and biological activities of novel substituted formazans of 3,4-dimethyl-1H-pyrrole-2-carbohydrazide derivatives. Journal of Pharmacy Research, 2013, 7, 582-587.	0.4	15
32	Phytochemical composition changes in untreated stem juice of Tinospora cordifolia (W) Mier during refrigerated storage. Journal of Pharmacy Research, 2013, 7, 1-6.	0.4	23
33	Proteomics & metabolomics: Mapping biochemical regulations. Drug Invention Today (discontinued), 2013, 5, 321-326.	0.6	15
34	Non-targeted identification of compounds from regenerated bark of Terminalia tomentosa by HPLC- (+) ESI-QTOFMS. Journal of Pharmacy Research, 2013, 6, 415-418.	0.4	5
35	A rapid and simple approach to discriminate various extracts of Saraca asoca [Roxb.], De. Wild using UPLC-QTOFMS and multivariate analysis. Journal of Pharmacy Research, 2013, 7, 143-149.	0.4	8
36	Anti-Aspergillus activity of selected medicinal plants. Journal of Pharmacy Research, 2013, 6, 419-422.	0.4	1

RAJESH DABUR

#	Article	IF	CITATIONS
37	Nontargeted Identification of the Phenolic and Other Compounds of <i>Saraca asoca</i> by High Performance Liquid Chromatography-Positive Electrospray Ionization and Quadrupole Time-of-Flight Mass Spectrometry. ISRN Pharmaceutics, 2013, 2013, 1-10.	1.0	17
38	β-sitosterol in different parts of Saraca asoca and herbal drug ashokarista: Quali-quantitative analysis by liquid chromatography-mass spectrometry. Journal of Advanced Pharmaceutical Technology and Research, 2013, 4, 146.	1.0	12
39	Antifungal Treatments Delineate a Correlation between Cathepsins and Cytokines in Murine Model of Invasive Aspergillosis. Indian Journal of Pharmaceutical Sciences, 2013, 75, 688-99.	1.0	4
40	Antimicrobial Activities of Gray Nickerbean (Caesalpinia bonduc Linn.). , 2011, , 561-567.		1
41	In vitro and in vivo antimicrobial activities of seeds of Caesalpinia bonduc (Lin.) Roxb Journal of Ethnopharmacology, 2009, 123, 177-180.	4.1	29
42	Natural products – antifungal agents derived from plants. Journal of Asian Natural Products Research, 2009, 11, 621-638.	1.4	244
43	Antimicrobial Activity Of Some Indian Medicinal Plants. Tropical Journal of Obstetrics and Gynaecology, 2008, 4, 313.	0.3	109
44	Post-antifungal effects of the antifungal compound 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate on Aspergillus fumigatus. Journal of Medical Microbiology, 2007, 56, 815-818.	1.8	6
45	An antifungal protein from Escherichia coli. Journal of Medical Microbiology, 2007, 56, 637-644.	1.8	18
46	T lymphocyte subset profile and serum alpha-1-antitrypsin in pathogenesis of chronic obstructive pulmonary disease. Clinical and Experimental Immunology, 2007, 149, 463-469.	2.6	14
47	Synthesis and antibacterial activity of substituted 1,2,3,4-tetrahydropyrazino [1,2-a] indoles. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 413-416.	2.2	66
48	Microwave-assisted synthesis of antimicrobial dihydropyridines and tetrahydropyrimidin-2-ones: Novel compounds against aspergillosis. Bioorganic and Medicinal Chemistry, 2006, 14, 973-981.	3.0	80
49	Association of the PIM3 allele of the alpha-1-antitrypsin gene with chronic obstructive pulmonary disease. Clinical Biochemistry, 2005, 38, 489-491.	1.9	14
50	Investigations on anti-Aspergillus properties of bacterial products. Letters in Applied Microbiology, 2005, 41, 309-314.	2.2	14
51	Crystal Structure of the Restriction-Modification System Control Element C.Bcll and Mapping of Its Binding Site. Structure, 2005, 13, 1837-1847.	3.3	30
52	In vitro antifungal activity of 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydropyrrole derivative. Journal of Medical Microbiology, 2005, 54, 549-552.	1.8	50
53	Efficacy of 2-(3,4-Dimethyl-2,5-Dihydro-1H-Pyrrole-2-yl)-1-Methylethyl Pentanoate in a Murine Model of Invasive Aspergillosis. Antimicrobial Agents and Chemotherapy, 2005, 49, 4365-4367.	3.2	5
54	A fraction from Escherichia coli with anti-Aspergillus properties. Journal of Medical Microbiology, 2005, 54, 375-379.	1.8	17

RAJESH DABUR

#	Article	IF	CITATIONS
55	Investigations toward new lead compounds from medicinally important plants. Pure and Applied Chemistry, 2005, 77, 25-40.	1.9	29
56	Antifungal potential of Indian medicinal plants. Fìtoterapìâ, 2004, 75, 389-391.	2.2	40
57	The role of glutathione in cancer. Cell Biochemistry and Function, 2004, 22, 343-352.	2.9	767
58	A novel antifungal pyrrole derivative from Datura metel leaves. Die Pharmazie, 2004, 59, 568-70.	0.5	37
59	Integrated omics analysis revealed the Tinospora cordifolia intervention modulated multiple signaling pathways in hypertriglyceridemia patients-a pilot clinical trial. Journal of Diabetes and Metabolic Disorders, 0, , 1.	1.9	2