
Armin Kohlrausch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10477677/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Perceptual similarity between piano notes: Simulations with a template-based perception model. Journal of the Acoustical Society of America, 2021, 149, 3534-3552.	1.1	10
2	Assessing the perceived reverberation in different rooms for a set of musical instrument sounds. Journal of the Acoustical Society of America, 2020, 148, EL93-EL98.	1.1	2
3	Perceptual similarity between piano notes: Experimental method applicable to reverberant and non-reverberant sounds. Journal of the Acoustical Society of America, 2019, 146, 1024-1035.	1.1	1
4	Auditory Modelling of the Perceptual Similarity Between Piano Sounds. Acta Acustica United With Acustica, 2018, 104, 930-934.	0.8	5
5	Predicting the perceived reverberation in different room acoustic environments using a binaural auditory model. Journal of the Acoustical Society of America, 2017, 141, EL381-EL387.	1.1	7
6	Why orchestral musicians are bound to wear earplugs: About the ineffectiveness of physical measures to reduce sound exposure. Journal of the Acoustical Society of America, 2017, 142, 3154-3164.	1.1	5
7	Modelling the sensation of fluctuation strength. Proceedings of Meetings on Acoustics, 2016, , .	0.3	7
8	Where Mathematics and Hearing Science Meet: Low Peak Factor Signals and Their Role in Hearing Research. , 2015, , 113-144.		0
9	Tone-in-Noise Detection: Observed Discrepancies in Spectral Integration. , 2010, , 133-141.		0
10	On the ability to discriminate Gaussian-noise tokens or random tone-burst complexes. Journal of the Acoustical Society of America, 2008, 124, 2251-2262.	1.1	16
11	Sound segregation based on temporal envelope structure and binaural cues. Journal of the Acoustical Society of America, 2008, 124, 1130-1145.	1.1	13
12	Parametric Coding of Stereo Audio. Eurasip Journal on Advances in Signal Processing, 2005, 2005, 1.	1.7	92
13	Audio—Visual Interaction in the Context of Multi-Media Applications. , 2005, , 109-138.		25
14	A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration. Eurasip Journal on Advances in Signal Processing, 2005, 2005, 1.	1.7	52
15	Binaural processing model based on contralateral inhibition. II. Dependence on spectral parameters. Journal of the Acoustical Society of America, 2001, 110, 1089-1104.	1.1	55
16	The influence of interaural stimulus uncertainty on binaural signal detection. Journal of the Acoustical Society of America, 2001, 109, 331-345.	1.1	17
17	Binaural processing model based on contralateral inhibition. I. Model structure. Journal of the Acoustical Society of America, 2001, 110, 1074-1088.	1.1	185
18	Binaural processing model based on contralateral inhibition. III. Dependence on temporal parameters. Journal of the Acoustical Society of America, 2001, 110, 1105-1117.	1.1	54

ARMIN KOHLRAUSCH

#	Article	IF	CITATIONS
19	The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers. Journal of the Acoustical Society of America, 2000, 108, 723-734.	1.1	225
20	The contribution of static and dynamically varying ITDs and IIDs to binaural detection. Journal of the Acoustical Society of America, 1999, 106, 979-992.	1.1	19
21	Intrinsic envelope fluctuations and modulation-detection thresholds for narrow-band noise carriers. Journal of the Acoustical Society of America, 1999, 106, 2752-2760.	1.1	93
22	Dependence of binaural masking level differences on center frequency, masker bandwidth, and interaural parameters. Journal of the Acoustical Society of America, 1999, 106, 1940-1947.	1.1	73
23	Diotic and dichotic detection using multiplied-noise maskers. Journal of the Acoustical Society of America, 1998, 103, 2100-2110.	1.1	29
24	Binaural signal detection with phase-shifted and time-delayed noise maskers. Journal of the Acoustical Society of America, 1998, 103, 2079-2083.	1.1	9
25	Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. Journal of the Acoustical Society of America, 1997, 102, 2892-2905.	1.1	513
26	Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. Journal of the Acoustical Society of America, 1997, 102, 2906-2919.	1.1	288
27	A new approach to comparing binaural masking level differences at low and high frequencies. Journal of the Acoustical Society of America, 1997, 101, 1671-1680.	1.1	148
28	A quantitative model of the â€~ã€~effective'' signal processing in the auditory system. I. Model structure. Journal of the Acoustical Society of America, 1996, 99, 3615-3622.	1.1	474
29	A quantitative model of the â€~â€~effective'' signal processing in the auditory system. II. Simulations and measurements. Journal of the Acoustical Society of America, 1996, 99, 3623-3631.	1.1	127
30	Phase effects in masking related to dispersion in the inner ear. II. Masking period patterns of short targets. Journal of the Acoustical Society of America, 1995, 97, 1817-1829.	1.1	113
31	The role of distortion products in masking by single bands of noise. Journal of the Acoustical Society of America, 1995, 98, 3125-3134.	1.1	2
32	Analytical expressions for the envelope correlation of certain narrowâ€band stimuli. Journal of the Acoustical Society of America, 1995, 98, 3157-3169.	1.1	23
33	Effect of masker level on overshoot in running―and frozenâ€noise maskers. Journal of the Acoustical Society of America, 1994, 95, 2192-2201.	1.1	75
34	Comment on â€~â€~Temporal modulation transfer functions in patients with cochlear implants'' [J. Acous Soc. Am. 91, 2156–2164 (1992)]. Journal of the Acoustical Society of America, 1993, 93, 1649-1650.	t. 1.1	21
35	Spectral integration of broadband signals in diotic and dichotic masking experiments. Journal of the Acoustical Society of America, 1992, 91, 317-326.	1.1	19
36	Differences in auditory performance between monaural and diotic conditions. I: Masked thresholds in frozen noise. Journal of the Acoustical Society of America, 1992, 91, 3456-3470.	1.1	31

#	Article	IF	CITATIONS
37	Auditory filter shape derived from binaural masking experiments. Journal of the Acoustical Society of America, 1988, 84, 573-583.	1.1	39
38	The influence of signal duration, signal frequency and masker duration on binaural masking level differences. Hearing Research, 1986, 23, 267-273.	2.0	25
39	Phase effects in masking related to dispersion in the inner ear. Journal of the Acoustical Society of America, 1986, 80, 1631-1637.	1.1	65