Abdullah Abbas Kendoush

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10476773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Void fraction measurement by X-ray absorption. Experimental Thermal and Fluid Science, 2002, 25, 615-621.	2.7	29
2	Experiments on flow characterization in vertical downward two-phase flow. Experimental Thermal and Fluid Science, 1994, 9, 34-38.	2.7	25
3	Theory of stagnation region heat and mass transfer to fluid jets impinging normally on solid surfaces. Chemical Engineering and Processing: Process Intensification, 1998, 37, 223-228.	3.6	23
4	Hydrodynamic model for bubbles in a swarm. Chemical Engineering Science, 2001, 56, 235-238.	3.8	23
5	Experimental evaluation of the virtual mass of two solid spheres accelerating in fluids. Experimental Thermal and Fluid Science, 2007, 31, 813-823.	2.7	23
6	A comparative study of the various nuclear radiations used for void fraction measurements. Nuclear Engineering and Design, 1992, 137, 249-257.	1.7	18
7	Theory of convective heat and mass transfer to spherical-cap bubbles. AICHE Journal, 1994, 40, 1440-1448.	3.6	18
8	The virtual mass of a spherical-cap bubble. Physics of Fluids, 2003, 15, 2782-2785.	4.0	17
9	Low Prandtl number heat transfer to fluids flowing past an isothermal spherical particle. International Journal of Heat and Fluid Flow, 1995, 16, 291-297.	2.4	16
10	Theoretical analysis of heat and mass transfer to fluids flowing across a flat plate. International Journal of Thermal Sciences, 2009, 48, 188-194.	4.9	16
11	Theory of convective drop evaporation in direct contact with an immiscible liquid. Desalination, 2004, 169, 33-41.	8.2	14
12	The Virtual Mass of a Rotating Sphere in Fluids. Journal of Applied Mechanics, Transactions ASME, 2005, 72, 801.	2.2	14
13	The virtual mass of an oblate-ellipsoidal bubble. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 253-255.	2.1	11
14	Heat, Mass, and Momentum Transfer to a Rising Ellipsoidal Bubble. Industrial & Engineering Chemistry Research, 2007, 46, 9232-9237.	3.7	8
15	Experimental investigation of the hydrodynamic interaction in bubbly two-phase flow. Chemical Engineering and Processing: Process Intensification, 2004, 43, 23-33.	3.6	7
16	Theory of convective heat and mass transfer to fluids flowing normal to a plane. International Communications in Heat and Mass Transfer, 1996, 23, 249-262.	5.6	6
17	Calculation of flow resistance from a spherical particle. Chemical Engineering and Processing: Process Intensification, 2000, 39, 81-86.	3.6	5
18	Experiments of fluid flow and heat convection in the wake of a disk facing a uniform stream. International Journal of Thermal Sciences, 2005, 44, 894-902.	4.9	5

#	Article	IF	CITATIONS
19	The virtual mass of a growing and collapsing bubble. AICHE Journal, 2006, 52, 2013-2019.	3.6	5
20	Modification of the Classical Theory of the Virtual Mass of an Accelerating Spherical Particle. , 2006, , 1423.		4
21	The growth rate of gas hydrate from refrigerant R12. Experimental Thermal and Fluid Science, 2006, 30, 643-651.	2.7	4
22	Enhancement of Convective Heat and Mass Transfer From Two Bubbles at High Reynolds Number. Journal of Heat Transfer, 2007, 129, 211-219.	2.1	4
23	Viscous Fluid Displacement by the Growing Bubble. Journal of Heat Transfer, 2006, 128, 100-103.	2.1	3
24	Measurement of void fraction in magnetic two-phase fluids. Experimental Thermal and Fluid Science, 2000, 22, 71-78.	2.7	2
25	Hydrodynamic Solution of the Virtual Mass Coefficient of a Vortex Ring Moving in a Fluid. Industrial & Engineering Chemistry Research, 2008, 47, 1081-1084.	3.7	2
26	The Virtual Mass Theory of a Taylor Bubble Rising in Vertical Pipes. Journal of Fluids Engineering, Transactions of the ASME, 2018, 140, .	1.5	1
27	Effects of the electric field on the virtual mass of a flowing fluid sphere. Canadian Journal of Physics, 2009, 87, 1095-1098.	1.1	0