List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10476471/publications.pdf Version: 2024-02-01

Γ.Δ΄¶ραν Τηφρ

#	Article	IF	CITATIONS
1	Can field botany be effectively taught as a distance course? Experiences and reflections from the COVID-19 pandemic. AoB PLANTS, 2022, 14, plab079.	1.2	2
2	The Plot Thickens: Haploid and Triploid-Like Thalli, Hybridization, and Biased Mating Type Ratios in Letharia. Frontiers in Fungal Biology, 2021, 2, .	0.9	6
3	Refining the picture: new records to the lichen biota of Italy. MycoKeys, 2021, 82, 97-137.	0.8	4
4	Tree species identity and composition shape the epiphytic lichen community of structurally simple boreal forests over vast areas. PLoS ONE, 2021, 16, e0257564.	1.1	8
5	The genera Brianaria (Psoraceae) and Micarea (Pilocarpaceae) in Japan, with reports on other interesting species in Asia. Lichenologist, 2021, 53, 35-44.	0.5	3
6	What is good for birds is not always good for lichens: Interactions between forest structure and species richness in managed boreal forests. Forest Ecology and Management, 2020, 473, 118327.	1.4	15
7	The evolutionary species pool concept does not explain occurrence patterns of dead-wood-dependent organisms: implications for logging residue extraction. Oecologia, 2019, 191, 241-252.	0.9	2
8	Rapid ecological response and intensified knowledge accumulation following a north European mega-fire. Scandinavian Journal of Forest Research, 2019, 34, 234-253.	0.5	43
9	Lichen chemistry is concordant with multilocus gene genealogy in the genus Cetrelia (Parmeliaceae,) Tj ETQq1	1 0.78431 1.1	4 rgBT /Over
10	Two Basidiomycete Fungi in the Cortex of Wolf Lichens. Current Biology, 2019, 29, 476-483.e5.	1.8	71
11	Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Scientific Reports, 2018, 8, 4952.	1.6	41
12	Morphological, chemical and species delimitation analyses provide new taxonomic insights into two groups of Rinodina – ERRATUM. Lichenologist, 2018, 50, 249-249.	0.5	0
13	Tree and stand structure of the non-native <i>Pinus contorta</i> in relation to native <i>PinusÂsylvestris</i> and <i>Picea abies</i> in young managed forests in boreal Sweden. Scandinavian Journal of Forest Research, 2018, 33, 245-254.	0.5	5
14	Galbinothrix, a new monotypic genus of Chrysotrichaceae (Arthoniomycetes) lacking pulvinic acid derivatives. Plant and Fungal Systematics, 2018, 63, 31-37.	0.7	1
15	Consequences of bioenergy wood extraction for landscape-level availability of habitat for dead wood-dependent organisms. Journal of Environmental Management, 2017, 198, 33-42.	3.8	16
16	Tree hollows can affect epiphyte species composition. Ecological Research, 2017, 32, 503-509.	0.7	4
17	Large proportion of wood dependent lichens in boreal pine forest are confined to old hard wood. Biodiversity and Conservation, 2017, 26, 1295-1310.	1.2	30
18	<i>Arthonia incarnata</i> (Arthoniaceae), a rare and poorly known oldâ€growth forest lichen new to Asia. Nordic Journal of Botany, 2017, 35, 587-594.	0.2	4

#	Article	IF	CITATIONS
19	The lichen genus <i>Rinodina</i> (<i>Physciaceae</i> , <i>Caliciales</i>) in north-eastern Asia. Lichenologist, 2017, 49, 617-672.	0.5	29
20	A Pine Is a Pine and a Spruce Is a Spruce – The Effect of Tree Species and Stand Age on Epiphytic Lichen Communities. PLoS ONE, 2016, 11, e0147004.	1.1	29
21	Morphological, chemical and species delimitation analyses provide new taxonomic insights into two groups of <i>Rinodina</i> . Lichenologist, 2016, 48, 469-488.	0.5	22
22	Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science, 2016, 353, 488-492.	6.0	409
23	The relative importance of stand and dead wood types for wood-dependent lichens in managed boreal forests. Fungal Ecology, 2016, 20, 166-174.	0.7	41
24	Combined observational and experimental data provide limited support for facilitation in lichens. Oikos, 2016, 125, 278-283.	1.2	7
25	<i>Inoderma</i> and related genera in <i>Arthoniaceae</i> with elevated white pruinose pycnidia or sporodochia. Lichenologist, 2015, 47, 233-256.	0.5	25
26	Tree Species Composition Predicts Epiphytic Lichen Communities in an African Montane Rain Forest. Biotropica, 2015, 47, 542-549.	0.8	8
27	Evolution of complex symbiotic relationships in a morphologically derived family of lichenâ€forming fungi. New Phytologist, 2015, 208, 1217-1226.	3.5	105
28	Diagnostics for a troubled backbone: testing topological hypotheses of trapelioid lichenized fungi in a large-scale phylogeny of Ostropomycetidae (Lecanoromycetes). Fungal Diversity, 2015, 73, 239-258.	4.7	46
29	Lichenicolous Fungi from Japan and Korea: New Species, New Records and a First Synopsis for Japan. Herzogia, 2015, 28, 762-789.	0.1	26
30	Functional redundancy of multiple forest taxa along an elevational gradient: predicting the consequences of nonâ€random species loss. Journal of Biogeography, 2015, 42, 1383-1396.	1.4	28
31	A large-scale phylogenetic revision of Roccellaceae (Arthoniales) reveals eight new genera. Fungal Diversity, 2015, 70, 31-53.	4.7	47
32	Composition of functional groups of ground vegetation differ between planted stands of non-native <i>Pinus contorta</i> and native <i>Pinus sylvestris</i> and <i>Picea abies</i> in northern Sweden. Silva Fennica, 2015, 49, .	0.5	11
33	The Arthonialean challenge: Restructuring Arthoniaceae. Taxon, 2014, 63, 727-744.	0.4	65
34	Four new Arthoniomycetes from Bwindi Impenetrable National Park, Uganda – supported by molecular data. Nova Hedwigia, 2014, 98, 295-312.	0.2	18
35	Dead branches on living trees constitute a large part of the dead wood in managed boreal forests, but are not important for woodâ€dependent lichens. Journal of Vegetation Science, 2014, 25, 819-828.	1.1	19
36	Additions to the Calicioid Flora of Japan and Korea, with the Descriptions of Two New Species. Annales Botanici Fennici, 2014, 51, 189-194.	0.0	8

#	Article	IF	CITATIONS
37	<i>Herpothallon inopinatum</i> (Arthoniaceae), a New Lichen Species from Mexico. Annales Botanici Fennici, 2014, 51, 63-68.	0.0	4
38	Effects of forest management on epiphytic lichens in temperate deciduous forests of Europe – A review. Forest Ecology and Management, 2013, 298, 27-38.	1.4	99
39	Occurrence Patterns of Lichens on Stumps in Young Managed Forests. PLoS ONE, 2013, 8, e62825.	1.1	29
40	Further Contributions to the GenusRinodina(Physciaceae, Lecanoromycetidae): Two Species New to Science and a New Record for the Canadian High Arctic. Herzogia, 2012, 25, 125-143.	0.1	11
41	Estimating Coextinction Risks from Epidemic Tree Death: Affiliate Lichen Communities among Diseased Host Tree Populations of Fraxinus excelsior. PLoS ONE, 2012, 7, e45701.	1.1	70
42	<i>Rinodina chrysidiata</i> , a new species from far eastern Asia and the Appalachian Mountains of North America. Lichenologist, 2012, 44, 179-187.	0.5	16
43	Modelled impact of Norway spruce logging residue extraction on biodiversity in Sweden. Canadian Journal of Forest Research, 2011, 41, 1220-1232.	0.8	52
44	Environmental and historical effects on lichen diversity in managed and unmanaged wooded meadows. Applied Vegetation Science, 2011, 14, 120-131.	0.9	24
45	Micarea capitata, a new bryophilous lichen from Sweden. Lichenologist, 2011, 43, 401-405.	0.5	8
46	The persistence of the snow petrel (Pagodroma nivea) in Dronning Maud Land (Antarctica) for over 37,000Âyears. Polar Biology, 2011, 34, 609-613.	0.5	13
47	Crypthonia, a new genus of byssoid Arthoniaceae (lichenised Ascomycota). Mycological Progress, 2010, 9, 281-303.	0.5	30
48	Lichen diversity and red-listed lichen species relationships with tree species and diameter in wooded meadows. Biodiversity and Conservation, 2010, 19, 2307-2328.	1.2	60
49	Colonization-extinction dynamics of epixylic lichens along a decay gradient in a dynamic landscape. Oikos, 2010, 119, 1947-1953.	1.2	35
50	Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon, 2010, 59, 1735-1753.	0.4	178
51	<i>Herpothallon biacidum</i> , a new lichen species from tropical Australia. Lichenologist, 2010, 42, 285-289.	0.5	7
52	Herpothallon rubroechinatum (Arthoniaceae), a new species from tropical and subtropical America. Bryologist, 2010, 113, 144-148.	0.1	7
53	(1898) Proposal to conserve <i>Stirtonia</i> A.L. Sm. (lichenized <i>Ascomycota, Arthoniales</i>) against <i>Stirtonia</i> R. Br. bis (<i>Bryophyta, Dicranales</i>). Taxon, 2009, 58, 1004-1004.	0.4	2
54	Lichens on dead wood: speciesâ€substrate relationships in the epiphytic lichen floras of the Pacific Northwest and Fennoscandia. Ecography, 2008, 31, 741-750.	2.1	79

#	Article	IF	CITATIONS
55	Lichen species diversity and substrate amounts in young planted boreal forests: A comparison between slash and stumps of Picea abies. Biological Conservation, 2008, 141, 47-55.	1.9	66
56	Lichen species density and abundance over ten years in permanent plots in inland Dronning Maud Land, Antarctica. Antarctic Science, 2008, 20, 115-121.	0.5	11
57	Importance of different tree fractions for epiphytic lichen diversity on Picea abies and Populus tremula in mature managed boreonemoral Swedish forests. Scandinavian Journal of Forest Research, 2007, 22, 219-230.	0.5	17
58	Gyalidea fruticola, a new corticolous lichen from Europe. Lichenologist, 2007, 39, 335-338.	0.5	4
59	Tree age relationships with epiphytic lichen diversity and lichen life history traits on ash in southern Sweden. Ecoscience, 2007, 14, 81-91.	0.6	82
60	Habitat preference, growth form, vegetative dispersal and population size of lichens along a wildfire severity gradient. Bryologist, 2006, 109, 527-540.	0.1	20
61	The Cryptothecia candida complex revisited. Lichenologist, 2006, 38, 235-240.	0.5	15
62	Phylogenetic analysis of multiple loci reveal the population structure within Letharia in the Caucasus and Morocco. Mycological Research, 2004, 108, 311-316.	2.5	21
63	Reproductive mode and genetic variation suggest a North American origin of European Letharia vulpina. Molecular Ecology, 2002, 11, 1191-1196.	2.0	53
64	Studies in taxonomy and developmental morphology in Chiodecton, Dichosporidium, Erythrodecton and the new genus Pulvinodecton (Arthoniales, lichenized Ascomycetes). Nordic Journal of Botany, 1998, 18, 95-120.	0.2	12
65	Gyalidea Praetermissa, a New Lichen from Sweden. Lichenologist, 1996, 28, 101.	0.5	1
66	Gyalidea Praetermissa, a New Lichen from Sweden. Lichenologist, 1996, 28, 101-104.	0.5	3
67	Reassessment of the first lichen and moss collections from Heimefrontfjella, Dronning Maud Land. Antarctic Science, 1995, 7, 261-264.	0.5	1
68	Factors of Importance to Some Lichen Species of Deciduous Broad-Leaved Woods in Southern Sweden. Lichenologist, 1992, 24, 255-266.	0.5	57
69	Erythrodecton kurzii, comb. nov Nordic Journal of Botany, 1992, 12, 733-735.	0.2	3
70	A new species of Solorinella (Asterothyriaceae) from Peru. Nordic Journal of Botany, 1984, 4, 823-826.	0.2	2
71	Taxonomic novelties and new records of Fennoscandian crustose lichens. MycoKeys, 0, 25, 51-86.	0.8	13