Asami Mori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1047624/publications.pdf

Version: 2024-02-01

361413 501196 1,100 72 20 28 h-index citations g-index papers 75 75 75 1254 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	<i>N</i> methyl-D-aspartic acid receptor-mediated vasodilation is attenuated in the retinas of diabetic rats. Current Eye Research, 2022, , 1-27.	1.5	1
2	Pharmacological depletion of retinal neurons prevents vertical angiogenic sprouting without affecting the superficial vascular plexus. Developmental Dynamics, 2021, 250, 497-512.	1.8	3
3	Role of Epoxyeicosatrienoic Acids in Acetylcholine-Induced Dilation of Rat Retinal Arterioles <i>in Vivo</i> . Biological and Pharmaceutical Bulletin, 2021, 44, 82-87.	1.4	5
4	L-Citrulline ameliorates the attenuation of acetylcholine-induced vasodilation of retinal arterioles in diabetic rats. Heliyon, 2021, 7, e06532.	3.2	3
5	Metformin Protects against NMDA-Induced Retinal Injury through the MEK/ERK Signaling Pathway in Rats. International Journal of Molecular Sciences, 2021, 22, 4439.	4.1	15
6	Involvement of Gap Junctions in Acetylcholine-Induced Endothelium-Derived Hyperpolarization-Type Dilation of Retinal Arterioles in Rats. Biological and Pharmaceutical Bulletin, 2021, 44, 1860-1865.	1.4	O
7	Activation of transient receptor potential vanilloid 4 channels dilates rat retinal arterioles through nitric oxide- and BKCa channel-dependent mechanisms in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 35-41.	3.0	4
8	The process of revascularization in the neonatal mouse retina following short-term blockade of vascular endothelial growth factor receptors. Cell and Tissue Research, 2020, 382, 529-549.	2.9	6
9	Involvement of Gi protein–dependent BKCa channel activation in β2-adrenoceptor-mediated dilation of retinal arterioles in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 2043-2052.	3.0	4
10	4-Aminopyridine, a Voltage-Gated K ⁺ Channel Inhibitor, Attenuates Nitric Oxide-Mediated Vasodilation of Retinal Arterioles in Rats. Biological and Pharmaceutical Bulletin, 2020, 43, 1123-1127.	1.4	4
11	Abnormal Vascular Phenotypes Associated with the Timing of Interruption of Retinal Vascular Development in Rats. Biological and Pharmaceutical Bulletin, 2020, 43, 859-863.	1.4	O
12	Attenuation of Retinal Endothelial Vasodilator Function in a Rat Model of Retinopathy of Prematurity. Current Eye Research, 2019, 44, 1360-1368.	1.5	1
13	Role of Neuron–Glia Signaling in Regulation of Retinal Vascular Tone in Rats. International Journal of Molecular Sciences, 2019, 20, 1952.	4.1	8
14	Involvement of matrix metalloproteinases in capillary degeneration following NMDA-induced neurotoxicity in the neonatal rat retina. Experimental Eye Research, 2019, 182, 101-108.	2.6	4
15	Probucol Slows the Progression of Cataracts in Streptozotocin-Induced Hyperglycemic Rats. Pharmacology, 2019, 103, 212-219.	2.2	4
16	Iron-chelating agents attenuate NMDA-Induced neuronal injury via reduction of oxidative stress in the rat retina. Experimental Eye Research, 2018, 171, 30-36.	2.6	33
17	GYY4137, an Extended-Release Hydrogen Sulfide Donor, Reduces NMDA-Induced Neuronal Injury in the Murine Retina. Biological and Pharmaceutical Bulletin, 2018, 41, 657-660.	1.4	13
18	Establishment of an abnormal vascular patterning model in the mouse retina. Journal of Pharmacological Sciences, 2018, 136, 177-188.	2.5	10

#	Article	IF	Citations
19	Retinal neuronal cell loss prevents abnormal retinal vascular growth in a rat model of retinopathy of prematurity. Experimental Eye Research, 2018, 168, 115-127.	2.6	8
20	Transient phenotypic changes in endothelial cells and pericytes in neonatal mouse retina following shortâ€ŧerm blockade of vascular endothelial growth factor receptors. Developmental Dynamics, 2018, 247, 699-711.	1.8	3
21	Methylglyoxal Impairs β ₂ -Adrenoceptor-Mediated Vasodilatory Mechanisms in Rat Retinal Arterioles. Biological and Pharmaceutical Bulletin, 2018, 41, 272-276.	1.4	4
22	Role of Glial Cells in μ-Opioid Receptor-Mediated Vasodilation in the Rat Retina. Current Eye Research, 2018, 43, 350-356.	1.5	4
23	Anti-angiogenic effects of valproic acid in a mouse model of oxygen-induced retinopathy. Journal of Pharmacological Sciences, 2018, 138, 203-208.	2.5	11
24	Anti-cataract Effect of Resveratrol in High-Glucose-Treated Streptozotocin-Induced Diabetic Rats. Biological and Pharmaceutical Bulletin, 2018, 41, 1586-1592.	1.4	29
25	Brilliant Blue G protects against photoreceptor injury in a murine endotoxin-induced uveitis model. Experimental Eye Research, 2018, 177, 45-49.	2.6	5
26	A delay in vascularization induces abnormal astrocyte proliferation and migration in the mouse retina. Developmental Dynamics, 2017, 246, 186-200.	1.8	15
27	Anti-diabetic drug metformin dilates retinal blood vessels through activation of AMP-activated protein kinase in rats. European Journal of Pharmacology, 2017, 798, 66-71.	3.5	8
28	Stimulation of $\hat{l}\frac{1}{4}$ -opioid receptors dilates retinal arterioles by neuronal nitric oxide synthase-derived nitric oxide in rats. European Journal of Pharmacology, 2017, 803, 124-129.	3. 5	10
29	MEK/ERK- and calcineurin/NFAT-mediated mechanism of cerebral hyperemia and brain injury following NMDA receptor activation. Biochemical and Biophysical Research Communications, 2017, 488, 329-334.	2.1	2
30	Stimulation of \hat{l}^21 - and \hat{l}^22 -adrenoceptors dilates retinal blood vessels in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 527-533.	3.0	7
31	l-Citrulline ameliorates cerebral blood flow during cortical spreading depression in rats: Involvement of nitric oxide- and prostanoids-mediated pathway. Journal of Pharmacological Sciences, 2017, 133, 146-155.	2.5	8
32	Opioid receptor activation is involved in neuroprotection induced by TRPV1 channel activation against excitotoxicity in the rat retina. European Journal of Pharmacology, 2017, 812, 57-63.	3 . 5	12
33	Probucol prevents the attenuation of \hat{l}^2 2-adrenoceptor-mediated vasodilation of retinal arterioles in diabetic rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1247-1253.	3.0	5
34	Activation inhibitors of nuclear factor kappa B protect neurons against the NMDA-induced damage in the rat retina. Journal of Pharmacological Sciences, 2017, 135, 72-80.	2.5	24
35	Mammalian Target of Rapamycin (mTOR) as a Potential Therapeutic Target in Pathological Ocular Angiogenesis. Biological and Pharmaceutical Bulletin, 2017, 40, 2045-2049.	1.4	29
36	Exposure to highâ€concentration oxygen in the neonatal period induces abnormal retinal vascular patterning in mice. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2016, 107, 216-224.	1.4	7

#	Article	IF	Citations
37	Apelin-36 is protective against N-methyl-D-aspartic-acid-induced retinal ganglion cell death in the mice. European Journal of Pharmacology, 2016, 791, 213-220.	3.5	21
38	Protective effects of PFâ€4708671 against <i>N</i> à€methylâ€ <scp>d</scp> â€aspartic acidâ€induced retinal damage in rats. Fundamental and Clinical Pharmacology, 2016, 30, 529-536.	1.9	4
39	Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats. Experimental Eye Research, 2016, 143, 120-131.	2.6	16
40	Effect of Long-Term Treatment of L-Ornithine on Visual Function and Retinal Histology in the Rats. Biological and Pharmaceutical Bulletin, 2015, 38, 139-143.	1.4	6
41	Preventive Effects of Rapamycin on Inflammation and Capillary Degeneration in a Rat Model of NMDA-Induced Retinal Injury. Biological and Pharmaceutical Bulletin, 2015, 38, 321-324.	1.4	14
42	Vasodilator Effects of Elcatonin, a Synthetic Eel Calcitonin, on Retinal Blood Vessels in Rats. Biological and Pharmaceutical Bulletin, 2015, 38, 1536-1541.	1.4	1
43	Protective Effects of Everolimus against <i>N</i> -Methyl-D-aspartic Acid-Induced Retinal Damage in Rats. Biological and Pharmaceutical Bulletin, 2015, 38, 1765-1771.	1.4	13
44	Retinal region-dependent susceptibility of capillaries to high-concentration oxygen exposure and vascular endothelial growthÂfactor receptor inhibition in neonatal mice. Journal of Pharmacological Sciences, 2015, 129, 107-118.	2.5	4
45	Impaired retinal vasodilator response to acetylcholine in a rat model of NMDA-induced retinal degeneration. Journal of Pharmacological Sciences, 2015, 127, 211-216.	2.5	7
46	4-Hydroxy-2-nonenal attenuates \hat{l}^2 2-adrenoceptor-mediated vasodilation of rat retinal arterioles. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 575-582.	3.0	9
47	Structural and functional changes in retinal vasculature induced by retinal ischemia-reperfusion in rats. Experimental Eye Research, 2015, 135, 134-145.	2.6	53
48	P2X7 receptor antagonists protect against N-methyl-d-aspartic acid-induced neuronal injury in the rat retina. European Journal of Pharmacology, 2015, 756, 52-58.	3.5	30
49	High-mobility group Box-1 is involved in NMDA-induced retinal injury the in rat retina. Experimental Eye Research, 2015, 137, 63-70.	2.6	17
50	l-Citrulline dilates rat retinal arterioles via nitric oxide- and prostaglandin-dependent pathways inÂvivo. Journal of Pharmacological Sciences, 2015, 127, 419-423.	2.5	18
51	Involvement of prostaglandin I2 in nitric oxide-induced vasodilation of retinal arterioles in rats. European Journal of Pharmacology, 2015, 764, 249-255.	3.5	16
52	Effects of mTOR inhibition on normal retinal vascular development in the mouse. Experimental Eye Research, 2014, 129, 127-134.	2.6	18
53	Activation of the TRPV1 channel attenuates N-methyl-d-aspartic acid-induced neuronal injury in the rat retina. European Journal of Pharmacology, 2014, 733, 13-22.	3.5	31
54	Rapamycin prevents <i>N</i> à€methylâ€Dâ€aspartateâ€induced retinal damage through an ERKâ€dependent mechanism in rats. Journal of Neuroscience Research, 2014, 92, 692-702.	2.9	20

#	Article	IF	CITATIONS
55	Effects of pre- and post-natal treatment with KRN633, an inhibitor of vascular endothelial growth factor receptor tyrosine kinase, on retinal vascular development and patterning in mice. Experimental Eye Research, 2014, 120, 127-137.	2.6	18
56	Hydrogen sulfide attenuates NMDA-induced neuronal injury via its anti-oxidative activity in the rat retina. Experimental Eye Research, 2014, 120, 90-96.	2.6	41
57	ISO-1, a macrophage migration inhibitory factor antagonist, prevents N-methyl-d-aspartate-induced retinal damage. European Journal of Pharmacology, 2013, 718, 138-144.	3.5	14
58	Neurovascular Interactions in the Retina: Physiological and Pathological Roles. Journal of Pharmacological Sciences, 2013, 123, 79-84.	2.5	43
59	Protective effects of the \hat{I}^2 3-adrenoceptor agonist CL316243 against N-methyl-D-aspartate-induced retinal neurotoxicity. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 1077-1081.	3.0	19
60	BMS-191011, an Opener of Large-Conductance Ca2+-Activated Potassium Channels, Dilates Rat Retinal Arterioles in Vivo. Biological and Pharmaceutical Bulletin, 2011, 34, 150-152.	1.4	17
61	Vasodilation of retinal arterioles induced by activation of BKCa channels is attenuated in diabetic rats. European Journal of Pharmacology, 2011, 669, 94-99.	3.5	25
62	Noradrenaline contracts rat retinal arterioles via stimulation of $\hat{l}\pm 1A$ - and $\hat{l}\pm 1D$ -adrenoceptors. European Journal of Pharmacology, 2011, 673, 65-69.	3.5	14
63	Role of calcium-activated potassium channels in acetylcholine-induced vasodilation of rat retinal arterioles in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 383, 27-34.	3.0	25
64	Role of \hat{I}^2 3-adrenoceptors in regulation of retinal vascular tone in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 384, 603-608.	3.0	24
65	Hyperglycemia Impairs Acetylcholine-Induced Vasodilation of Retinal Arterioles Through Polyol Pathway–Independent Mechanisms in Rats. Journal of Pharmacological Sciences, 2010, 112, 336-342.	2.5	8
66	Pharmacological evidence for the presence of functional $\hat{1}^2$ 3-adrenoceptors in rat retinal blood vessels. Naunyn-Schmiedeberg's Archives of Pharmacology, 2010, 382, 119-126.	3.0	50
67	Nitric oxide dilates rat retinal blood vessels by cyclooxygenase-dependent mechanisms. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R968-R977.	1.8	31
68	The prostanoid EP2 receptor agonist ONO-AE1-259-01 protects against glutamate-induced neurotoxicity in rat retina. European Journal of Pharmacology, 2009, 616, 64-67.	3.5	26
69	Hyperglycemia Accelerates Impairment of Vasodilator Responses to Acetylcholine of Retinal Blood Vessels in Rats. Journal of Pharmacological Sciences, 2009, 110, 160-168.	2.5	31
70	\hat{l}^2 -Adrenoceptor-mediated vasodilation of retinal blood vessels is reduced in streptozotocin-induced diabetic rats. Vascular Pharmacology, 2008, 49, 77-83.	2.1	24
71	Intravenously Administered Vasodilatory Prostaglandins Increase Retinal and Choroidal Blood Flow in Rats. Journal of Pharmacological Sciences, 2007, 103, 103-112.	2.5	20
72	Stimulation of prostanoid IP and EP2 receptors dilates retinal arterioles and increases retinal and choroidal blood flow in rats. European Journal of Pharmacology, 2007, 570, 135-141.	3.5	60