Raquel Costa-Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1047449/publications.pdf Version: 2024-02-01

RAQUEL COSTA-ALMEIDA

#	Article	IF	CITATIONS
1	Carbon nanomaterials for phototherapy of cancer and microbial infections. Carbon, 2022, 190, 194-244.	5.4	24
2	Advances in carbon nanomaterials for immunotherapy. Applied Materials Today, 2022, 27, 101397.	2.3	15
3	Fabrication of Polymer/Graphene Biocomposites for Tissue Engineering. Polymers, 2022, 14, 1038.	2.0	8
4	In vitro temporal HIFâ€mediated deposition of osteochondrogenic matrix governed by hypoxia and osteogenic factors synergy. Journal of Cellular Physiology, 2021, 236, 3991-4007.	2.0	8
5	High-Yield Production of Nano-Lateral Size Graphene Oxide by High-Power Ultrasonication. Materials, 2021, 14, 1916.	1.3	5
6	Graphene Oxide Topical Administration: Skin Permeability Studies. Materials, 2021, 14, 2810.	1.3	11
7	A Physiology-Inspired Multifactorial Toolbox in Soft-to-Hard Musculoskeletal Interface Tissue Engineering. Trends in Biotechnology, 2020, 38, 83-98.	4.9	36
8	Customizable Composite Fibers for Engineering Skeletal Muscle Models. ACS Biomaterials Science and Engineering, 2020, 6, 1112-1123.	2.6	29
9	Platelet-rich Blood Derivatives for Tendon Regeneration. Journal of the American Academy of Orthopaedic Surgeons, The, 2020, 28, e202-e205.	1.1	6
10	Near-Infrared Radiation-Based Mild Photohyperthermia Therapy of Non-Melanoma Skin Cancer with PEGylated Reduced Nanographene Oxide. Polymers, 2020, 12, 1840.	2.0	23
11	Polyphenol-Based Nanoparticles as Multifaceted Diabetes Modulators. Nanotechnology in the Life Sciences, 2020, , 251-270.	0.4	0
12	Metabolic Disease Epidemics: Emerging Challenges in Regenerative Medicine. Trends in Endocrinology and Metabolism, 2019, 30, 147-149.	3.1	8
13	Mesenchymal Stem Cells Empowering Tendon Regenerative Therapies. International Journal of Molecular Sciences, 2019, 20, 3002.	1.8	99
14	A Textile Platform Using Continuous Aligned and Textured Composite Microfibers to Engineer Tendonâ€ŧoâ€Bone Interface Gradient Scaffolds. Advanced Healthcare Materials, 2019, 8, e1900200.	3.9	56
15	Enthesis Tissue Engineering: Biological Requirements Meet at the Interface. Tissue Engineering - Part B: Reviews, 2019, 25, 330-356.	2.5	47
16	Exploring platelet lysate hydrogel-coated suture threads as biofunctional composite living fibers for cell delivery in tissue repair. Biomedical Materials (Bristol), 2019, 14, 034104.	1.7	15
17	Cellular Complexity at the Interface: Challenges in Enthesis Tissue Engineering. Advances in Experimental Medicine and Biology, 2019, 1144, 71-90.	0.8	15
18	Engineering magnetically responsive tropoelastin spongy-like hydrogels for soft tissue regeneration. Journal of Materials Chemistry B, 2018, 6, 1066-1075.	2.9	13

RAQUEL COSTA-ALMEIDA

#	Article	IF	CITATIONS
19	The effects of platelet lysate patches on the activity of tendon-derived cells. Acta Biomaterialia, 2018, 68, 29-40.	4.1	22
20	Continuous Exposure to Simulated Hypergravity-Induced Changes in Proliferation, Morphology, and Gene Expression of Human Tendon Cells. Stem Cells and Development, 2018, 27, 858-869.	1.1	12
21	Fibroblasts as maestros orchestrating tissue regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 240-251.	1.3	55
22	Multifunctional magnetic-responsive hydrogels to engineer tendon-to-bone interface. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2375-2385.	1.7	65
23	Tendon explant cultures to study the communication between adipose stem cells and native tendon niche. Journal of Cellular Biochemistry, 2018, 119, 3653-3662.	1.2	21
24	Crosstalk between adipose stem cells and tendon cells reveals a temporal regulation of tenogenesis by matrix deposition and remodeling. Journal of Cellular Physiology, 2018, 233, 5383-5395.	2.0	21
25	Cellâ€laden composite suture threads for repairing damaged tendons. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1039-1048.	1.3	25
26	Gravity, Tissue Engineering, and the Missing Link. Trends in Biotechnology, 2018, 36, 343-347.	4.9	7
27	Magnetotherapy: The quest for tendon regeneration. Journal of Cellular Physiology, 2018, 233, 6395-6405.	2.0	20
28	Biâ€directional modulation of cellular interactions in an in vitro coâ€culture model of tendonâ€ŧoâ€bone interface. Cell Proliferation, 2018, 51, e12493.	2.4	17
29	Injectable Hyaluronic Acid Hydrogels Enriched with Platelet Lysate as a Cryostable Off-the-Shelf System for Cell-Based Therapies. Regenerative Engineering and Translational Medicine, 2017, 3, 53-69.	1.6	15
30	3D Mimicry of Nativeâ€Tissueâ€Fiber Architecture Guides Tendonâ€Derived Cells and Adipose Stem Cells into Artificial Tendon Constructs. Small, 2017, 13, 1700689.	5.2	106
31	Exploring the <i>in vitro</i> and <i>in vivo</i> compatibility of PLA, PLA/GNP and PLA/CNT OOH biodegradable nanocomposites: Prospects for tendon and ligament applications. Journal of Biomedical Materials Research - Part A, 2017, 105, 2182-2190.	2.1	20
32	Uncovering the effect of low-frequency static magnetic field on tendon-derived cells: from mechanosensing to tenogenesis. Scientific Reports, 2017, 7, 10948.	1.6	13
33	Monocarboxylate transporter 1 is a key player in gliomaâ€endothelial cell crosstalk. Molecular Carcinogenesis, 2017, 56, 2630-2642.	1.3	31
34	Microengineered Multicomponent Hydrogel Fibers: Combining Polyelectrolyte Complexation and Microfluidics. ACS Biomaterials Science and Engineering, 2017, 3, 1322-1331.	2.6	45
35	Effects of hypergravity on the angiogenic potential of endothelial cells. Journal of the Royal Society Interface, 2016, 13, 20160688.	1.5	11
36	Fabrication of Hierarchical and Biomimetic Fibrous Structures to Support the Regeneration of Tendon Tissues. , 2015, , 259-280.		5

#	Article	IF	CITATIONS
37	Fibroblast-Endothelial Partners for Vascularization Strategies in Tissue Engineering. Tissue Engineering - Part A, 2015, 21, 1055-1065.	1.6	54
38	Tendon Stem Cell Niche. Pancreatic Islet Biology, 2015, , 221-244.	0.1	7
39	Cell-Based Approaches for Tendon Regeneration. , 2015, , 187-203.		9
40	Cellular strategies to promote vascularisation in tissue engineering applications. , 2014, 28, 51-67.		61
41	Biodegradation of petroleum hydrocarbons in estuarine sediments: metal influence. Biodegradation, 2013, 24, 111-123.	1.5	27
42	Textile tissue engineering: a path towards organ weaving. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	2