Huangang Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10474143/publications.pdf

Version: 2024-02-01

516710 552781 26 961 16 26 citations h-index g-index papers 26 26 26 870 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in Cathode Development. Energy & Energy & 2020, 34, 15169-15194.	5.1	152
2	Electrolyte materials for intermediate-temperature solid oxide fuel cells. Progress in Natural Science: Materials International, 2020, 30, 764-774.	4.4	129
3	Systematic evaluation of Co-free LnBaFe2O5+ \hat{l} ′ (Ln=Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2012, 78, 466-474.	5. 2	105
4	In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance. Applied Energy, 2015, 141, 200-208.	10.1	82
5	BaCo _{0.7} Fe _{0.22} Y _{0.08} O _{3â^Î} as an Active Oxygen Reduction Electrocatalyst for Low-Temperature Solid Oxide Fuel Cells below 600 °C. ACS Energy Letters, 2017, 2, 301-305.	17.4	70
6	Performance of SrSc0.2Co0.8O3â^Î^+Sm0.5Sr0.5CoO3â^Î^mixed-conducting composite electrodes for oxygen reduction at intermediate temperatures. International Journal of Hydrogen Energy, 2009, 34, 9496-9504.	7.1	44
7	Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance. International Journal of Hydrogen Energy, 2013, 38, 9310-9319.	7.1	44
8	Building Ruddlesden–Popper and Single Perovskite Nanocomposites: A New Strategy to Develop Highâ€Performance Cathode for Protonic Ceramic Fuel Cells. Small, 2021, 17, e2101872.	10.0	38
9	Fabrication of an anode-supported yttria-stabilized zirconia thin film for solid-oxide fuel cells via wet powder spraying. Journal of Power Sources, 2008, 184, 229-237.	7.8	35
10	Wet powder spraying fabrication and performance optimization of IT-SOFCs with thin-film ScSZ electrolyte. International Journal of Hydrogen Energy, 2012, 37, 1125-1132.	7.1	32
11	Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing. Journal of Power Sources, 2015, 273, 465-471.	7.8	32
12	Comparative study of doped ceria thin-film electrolytes prepared by wet powder spraying with powder synthesized via two techniques. Journal of Power Sources, 2010, 195, 393-401.	7.8	28
13	Effect of Sm3+ content on the properties and electrochemical performance of SmxSr1â^xCoO3â^î^(0.2≤â‰0.8) as an oxygen reduction electrodes on doped ceria electrolytes. Electrochimica Acta, 2011, 56, 2870-2876.	5.2	27
14	Significant impact of the current collection material and method on the performance of Ba0.5Sr0.5Co0.8Fe0.2O3â° electrodes in solid oxide fuel cells. Journal of Power Sources, 2011, 196, 5511-5519.	7.8	26
15	Solid oxide fuel cells in combination with biomass gasification for electric power generation. Chinese Journal of Chemical Engineering, 2020, 28, 1156-1161.	3.5	25
16	High performance tubular solid oxide fuel cells with BSCF cathode. International Journal of Hydrogen Energy, 2012, 37, 13022-13029.	7.1	22
17	The role of ceria in LSM-GDC composite cathode for electrochemical reduction of nitric oxide. Applied Catalysis B: Environmental, 2016, 197, 244-253.	20.2	16
18	Iron incorporated Ni–ZrO2 catalysts for electric power generation from methane. International Journal of Hydrogen Energy, 2012, 37, 9801-9808.	7.1	14

#	Article	IF	CITATIONS
19	Fabrication and operation of flowâ€through tubular SOFCs for electric power and synthesis gas cogeneration from methane. AICHE Journal, 2014, 60, 1036-1044.	3.6	11
20	Reducing the operation temperature of a solid oxide fuel cell using a conventional nickel-based cermet anode on dimethyl ether fuel through internal partial oxidation. Journal of Power Sources, 2011, 196, 7601-7608.	7.8	10
21	Investigation on the relationship between slurry droplet entrainment and fine particle emission in the limestone-gypsum WFGD system. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, 42, 1691-1704.	2.3	6
22	Electrochemical reduction of nitric oxide in different carbon-driven solid state cells. Journal of Alloys and Compounds, 2020, 812, 152163.	5.5	5
23	Electrochemical Performance of Ba0.5Sr0.5Co0.8Fe0.2O3â^'Î' in Symmetric Cells With Sm0.2Ce0.8O1.9 Electrolyte for Nitric Oxide Reduction Reaction. Frontiers in Chemistry, 2019, 7, 947.	3.6	3
24	Contributions of Boudouard reaction to NO electrocatalytic reduction by Fe-loaded carbon materials in the presence of O2. Journal of Catalysis, 2021, 394, 30-39.	6.2	2
25	Solidâ€state synthesis of BaCe _{0.16} Y _{0.04} Fe _{0.8} O _{3â€Î} cathode for protonic ceramic fuel cells. Asia-Pacific Journal of Chemical Engineering, 2022, 17, .	1.5	2
26	Alleviation of O2 competition with NO in electrochemical reduction through nanoceria supported on LSM cathode. Fuel, 2022, 327, 124872.	6.4	1