
Mehdi Estili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10474117/publications.pdf Version: 2024-02-01

MEHDI Fo

#	Article	IF	CITATIONS
1	Heterocoagulation and SPS sintering of sulfonitric-treated CNT and 8YZ nanopowders. Journal of Asian Ceramic Societies, 2019, 7, 238-246.	2.3	4
2	Dispersion and structural evolution of multi-walled carbon nanotubes in ZrB2 matrix. Ceramics International, 2017, 43, 10533-10539.	4.8	4
3	Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Acta Biomaterialia, 2017, 52, 81-91.	8.3	135
4	Fabrication of poly(ethylene glycol) hydrogels containing vertically and horizontally aligned graphene using dielectrophoresis: An experimental and modeling study. Carbon, 2017, 123, 460-470.	10.3	24
5	Carbon nanotubes embedded in embryoid bodies direct cardiac differentiation. Biomedical Microdevices, 2017, 19, 57.	2.8	30
6	Dispersion and Reinforcing Mechanism of Carbon Nanotubes in a Ceramic Material. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 955-964.	0.2	2
7	Graphene induces spontaneous cardiac differentiation in embryoid bodies. Nanoscale, 2016, 8, 7075-7084.	5.6	39
8	Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomaterialia, 2016, 31, 134-143.	8.3	145
9	Facile and green production of aqueous graphene dispersions for biomedical applications. Nanoscale, 2015, 7, 6436-6443.	5.6	114
10	Sintering in a graphite powder bed of alumina-toughened zirconia/carbon nanotube composites: a novel way to delay hydrothermal degradation. Ceramics International, 2015, 41, 4569-4580.	4.8	10
11	45S5 Bioglass®–MWCNT composite: processing and bioactivity. Journal of Materials Science: Materials in Medicine, 2015, 26, 199.	3.6	26
12	Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminum. Composites Part A: Applied Science and Manufacturing, 2015, 68, 133-139.	7.6	85
13	Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites. Science and Technology of Advanced Materials, 2014, 15, 064902.	6.1	73
14	Trends in electronic structures and structural properties of MAX phases: a first-principles study on M ₂ AlC (M = Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M ₂ AlN, and hypothetical M ₂ AlB phases. Journal of Physics Condensed Matter, 2014, 26, 505503.	1.8	116
15	Mechanically reliable thermoelectric (TE) nanocomposites by dispersing and embedding TE-nanostructures inside a tetragonal ZrO2matrix: the concept and experimental demonstration in graphene oxide–3YSZ system. Science and Technology of Advanced Materials, 2014, 15, 014201.	6.1	14
16	Microstructure and high-temperature strength of textured and non-textured ZrB ₂ ceramics. Science and Technology of Advanced Materials, 2014, 15, 014202.	6.1	43
17	Facile and rapid generation of 3D chemical gradients within hydrogels for high-throughput drug screening applications. Biosensors and Bioelectronics, 2014, 59, 166-173.	10.1	35
18	The effect of the interlayer element on the exfoliation of layered Mo ₂ AC (A = Al, Si, P, Ga,) Tj ETQo	0 0 0 rgBT 6.1	/Overlock 10 78

2

of Advanced Materials, 2014, 15, 014208.

Mehdi Estili

#	Article	IF	CITATIONS
19	Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. Physical Chemistry Chemical Physics, 2014, 16, 7841-7849.	2.8	395
20	Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication. Scientific Reports, 2014, 4, 4271.	3.3	213
21	Dielectrophoretically Aligned Carbon Nanotubes to Control Electrical and Mechanical Properties of Hydrogels to Fabricate Contractile Muscle Myofibers. Advanced Materials, 2013, 25, 4028-4034.	21.0	236
22	Microstructure and mechanical properties of ZrB2–SiC–BN composites fabricated by reactive hot pressing and reactive spark plasma sintering. Scripta Materialia, 2013, 68, 889-892.	5.2	25
23	Machinable ZrB2–SiC–BN composites fabricated by reactive spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 41-46.	5.6	39
24	Perfect Highâ€Temperature Plasticity Realized in Multiwalled Carbon Nanotubeâ€Concentrated αâ€ <scp><scp>Al</scp></scp> ₂ <scp><scp>O</scp></scp> ₃ Hybrid. Journal of the American Ceramic Society, 2013, 96, 1904-1908.	3.8	14
25	Novel Electronic and Magnetic Properties of Twoâ€Dimensional Transition Metal Carbides and Nitrides. Advanced Functional Materials, 2013, 23, 2185-2192.	14.9	1,418
26	Unprecedented simultaneous enhancement in strain tolerance, toughness and strength of Al ₂ O ₃ ceramic by multiwall-type failure of a high loading of carbon nanotubes. Nanotechnology, 2013, 24, 155702.	2.6	37
27	Highly Concentrated 3D Macrostructure of Individual Carbon Nanotubes in a Ceramic Environment. Advanced Materials, 2012, 24, 4322-4326.	21.0	56
28	In situ characterization of tensile-bending load bearing ability of multi-walled carbon nanotubes in alumina-based nanocomposites. Journal of Materials Chemistry, 2011, 21, 4272.	6.7	32
29	Multi-Walled Carbon Nanotube-Aluminum Matrix Composites Prepared by Combination of Hetero-Agglomeration Method, Spark Plasma Sintering and Hot Extrusion. Materials Transactions, 2011, 52, 1960-1965.	1.2	57
30	Engineering Strong Intergraphene Shear Resistance in Multiâ€walled Carbon Nanotubes and Dramatic Tensile Improvements. Advanced Materials, 2010, 22, 607-610.	21.0	74
31	Multiwalled carbon nanotube-reinforced ceramic matrix composites as a promising structural material. Journal of Nuclear Materials, 2010, 398, 244-245.	2.7	13
32	Advanced Nanostructure-Controlled Functionally Graded Materials Employing Carbon Nanotubes. Materials Science Forum, 2009, 631-632, 225-230.	0.3	5
33	Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon, 2009, 47, 570-577.	10.3	538
34	The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in α-alumina ceramics for structural reinforcement. Acta Materialia, 2008, 56, 4070-4079.	7.9	105
35	An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scripta Materialia, 2008, 58, 906-909.	5.2	99
36	Multiwalled carbon nanotubes as a unique agent to fabricate nanostructure-controlled functionally graded alumina ceramics. Scripta Materialia, 2008, 59, 703-705.	5.2	37