Zhenhua Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/104739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The most active Cu facet for low-temperature water gas shift reaction. Nature Communications, 2017, 8, 488.	12.8	141
2	Compositions, Structures, and Catalytic Activities of CeO ₂ @Cu ₂ O Nanocomposites Prepared by the Template-Assisted Method. Langmuir, 2014, 30, 6427-6436.	3.5	101
3	Controllably Interfacing with Metal: A Strategy for Enhancing CO Oxidation on Oxide Catalysts by Surface Polarization. Journal of the American Chemical Society, 2014, 136, 14650-14653.	13.7	89
4	Support-dependent rate-determining step of CO2 hydrogenation to formic acid on metal oxide supported Pd catalysts. Journal of Catalysis, 2019, 376, 57-67.	6.2	83
5	The active sites of Cu–ZnO catalysts for water gas shift and CO hydrogenation reactions. Nature Communications, 2021, 12, 4331.	12.8	83
6	Siteâ€Resolved Cu ₂ O Catalysis in the Oxidation of CO. Angewandte Chemie - International Edition, 2019, 58, 4276-4280.	13.8	81
7	Metal-Free Ceria Catalysis for Selective Hydrogenation of Crotonaldehyde. ACS Catalysis, 2020, 10, 14560-14566.	11.2	64
8	An <i>in situ</i> DRIFTS mechanistic study of CeO ₂ -catalyzed acetylene semihydrogenation reaction. Physical Chemistry Chemical Physics, 2018, 20, 9659-9670.	2.8	63
9	Ceria morphology-dependent Pd-CeO2 interaction and catalysis in CO2 hydrogenation into formate. Journal of Catalysis, 2021, 397, 116-127.	6.2	63
10	Understanding morphology-dependent CuO -CeO2 interactions from the very beginning. Chinese Journal of Catalysis, 2020, 41, 1006-1016.	14.0	56
11	Titania-morphology-dependent dual-perimeter-sites catalysis by Au/TiO2 catalysts in low-temperature CO oxidation. Journal of Catalysis, 2018, 368, 163-171.	6.2	47
12	Zirconia phase effect in Pd/ZrO2 catalyzed CO2 hydrogenation into formate. Molecular Catalysis, 2019, 475, 110461.	2.0	46
13	Morphology-Dependent Evolutions of Sizes, Structures, and Catalytic Activity of Au Nanoparticles on Anatase TiO ₂ Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 10367-10376.	3.1	39
14	Structure sensitivity of CuO in CO oxidation over CeO2-CuO/Cu2O catalysts. Journal of Catalysis, 2022, 405, 333-345.	6.2	39
15	Ceria-supported Pd catalysts with different size regimes ranging from single atoms to nanoparticles for the oxidation of CO. Journal of Catalysis, 2022, 407, 104-114.	6.2	36
16	Tuning activity and selectivity of CO2 hydrogenation via metal-oxide interfaces over ZnO-supported metal catalysts. Journal of Catalysis, 2022, 407, 126-140.	6.2	34
17	Fine cubic Cu2O nanocrystals as highly selective catalyst for propylene epoxidation with molecular oxygen. Nature Communications, 2021, 12, 5921.	12.8	33
18	Morphology-engineered highly active and stable Pd/TiO2 catalysts for CO2 hydrogenation into formate. Journal of Catalysis, 2022, 405, 152-163.	6.2	33

ZHENHUA ZHANG

#	Article	IF	CITATIONS
19	Facet Sensitivity of Capping Ligandâ€Free Ag Crystals in CO ₂ Electrochemical Reduction to CO. ChemCatChem, 2018, 10, 5128-5134.	3.7	29
20	Morphology-dependent CeO2 catalysis in acetylene semihydrogenation reaction. Applied Surface Science, 2020, 501, 144120.	6.1	29
21	Titania Morphologyâ€Dependent Catalysis of CuO _x /TiO ₂ Catalysts in CO Oxidation and Water Gas Shift Reactions. ChemCatChem, 2020, 12, 3679-3686.	3.7	29
22	Crystal-plane effect of Cu ₂ O templates on compositions, structures and catalytic performance of Ag/Cu ₂ O nanocomposites. CrystEngComm, 2019, 21, 2002-2008.	2.6	26
23	Zinc Oxide Morphologyâ€Ðependent Pd/ZnO Catalysis in Baseâ€Free CO ₂ Hydrogenation into Formic Acid. ChemCatChem, 2020, 12, 5540-5547.	3.7	24
24	Morphology-dependent structures and catalytic performances of Au nanostructures on Cu 2 O nanocrystals synthesized by galvanic replacement reaction. Journal of Energy Chemistry, 2016, 25, 1086-1091.	12.9	21
25	Morphology-Dependent CO Reduction Kinetics and Surface Copper Species Evolution of Cu ₂ O Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 21568-21576.	3.1	20
26	<scp>Cu₂O</scp> Nanocrystal Model Catalysts. Chinese Journal of Chemistry, 2022, 40, 846-855.	4.9	18
27	<scp>Morphologyâ€Dependent</scp> Catalysis of <scp>CeO₂â€Based</scp> Nanocrystal Model Catalysts. Chinese Journal of Chemistry, 2022, 40, 1856-1866.	4.9	18
28	Au u Alloy Formation on Cubic Cu ₂ 0 Nanocrystals at Ambient Temperature and Their Catalytic Performance. ChemNanoMat, 2016, 2, 861-865.	2.8	12
29	Siteâ€Resolved Cu 2 O Catalysis in the Oxidation of CO. Angewandte Chemie, 2019, 131, 4320-4324.	2.0	12
30	Methanol Partial Oxidation Over Shaped Silver Nanoparticles Derived from Cubic and Octahedral Ag2O Nanocrystals. Catalysis Letters, 2019, 149, 2482-2491.	2.6	8
31	Applications of Chemical Kinetics in Heterogeneous Catalysis. , 0, , .		5
32	Covalent structured catalytic materials containing single-atom metal sites with controllable spatial and chemical properties: concept and application. Catalysis Science and Technology, 2020, 10, 6694-6700.	4.1	2