
## Heather C Mefford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1047386/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | De novo mutations in epileptic encephalopathies. Nature, 2013, 501, 217-221.                                                                               | 13.7 | 1,351     |
| 2  | Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nature Genetics, 2010, 42, 790-793.                                              | 9.4  | 1,238     |
| 3  | Multiplex Targeted Sequencing Identifies Recurrently Mutated Genes in Autism Spectrum Disorders.<br>Science, 2012, 338, 1619-1622.                         | 6.0  | 1,133     |
| 4  | Recurrent Rearrangements of Chromosome 1q21.1 and Variable Pediatric Phenotypes. New England<br>Journal of Medicine, 2008, 359, 1685-1699.                 | 13.9 | 663       |
| 5  | Disruptive CHD8 Mutations Define a Subtype of Autism Early in Development. Cell, 2014, 158, 263-276.                                                       | 13.5 | 637       |
| 6  | SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs).<br>Molecular Autism, 2013, 4, 36.                               | 2.6  | 632       |
| 7  | Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nature Genetics, 2013, 45, 825-830.                  | 9.4  | 589       |
| 8  | Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nature Genetics, 2014, 46, 1063-1071.            | 9.4  | 583       |
| 9  | A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nature<br>Genetics, 2010, 42, 203-209.                          | 9.4  | 539       |
| 10 | Population Analysis of Large Copy Number Variants and Hotspots of Human Genetic Disease. American<br>Journal of Human Genetics, 2009, 84, 148-161.         | 2.6  | 530       |
| 11 | 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nature Genetics, 2009, 41, 160-162.                                               | 9.4  | 511       |
| 12 | A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nature Genetics, 2008, 40, 322-328.                            | 9.4  | 509       |
| 13 | Genome-Wide Copy Number Variation in Epilepsy: Novel Susceptibility Loci in Idiopathic Generalized and Focal Epilepsies. PLoS Genetics, 2010, 6, e1000962. | 1.5  | 414       |
| 14 | Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain, 2010, 133, 23-32.                                 | 3.7  | 406       |
| 15 | High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. American<br>Journal of Human Genetics, 2017, 101, 664-685.       | 2.6  | 337       |
| 16 | GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nature Genetics, 2013, 45, 1073-1076.                                                          | 9.4  | 326       |
| 17 | Genomics, Intellectual Disability, and Autism. New England Journal of Medicine, 2012, 366, 733-743.                                                        | 13.9 | 276       |
| 18 | The phenotypic spectrum of <i>SCN8A</i> encephalopathy. Neurology, 2015, 84, 480-489.                                                                      | 1.5  | 246       |

2

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | <i>GABRA1</i> and <i>STXBP1</i> : Novel genetic causes of Dravet syndrome. Neurology, 2014, 82, 1245-1253.                                                                        | 1.5 | 229       |
| 20 | Recurrent Reciprocal Genomic Rearrangements of 17q12 Are Associated with Renal Disease, Diabetes, and Epilepsy. American Journal of Human Genetics, 2007, 81, 1057-1069.          | 2.6 | 222       |
| 21 | Rare copy number variants are an important cause of epileptic encephalopathies. Annals of Neurology, 2011, 70, 974-985.                                                           | 2.8 | 222       |
| 22 | Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Human Molecular Genetics, 2014, 23, 3200-3211.                | 1.4 | 222       |
| 23 | Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Human Molecular Genetics, 2009, 18, 3626-3631. | 1.4 | 211       |
| 24 | <i>SCN2A</i> encephalopathy. Neurology, 2015, 85, 958-966.                                                                                                                        | 1.5 | 211       |
| 25 | Duplication hotspots, rare genomic disorders, and common disease. Current Opinion in Genetics and Development, 2009, 19, 196-204.                                                 | 1.5 | 191       |
| 26 | Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurology,<br>The, 2017, 16, 135-143.                                                  | 4.9 | 190       |
| 27 | <i>GRIN2B</i> encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. Journal of Medical Genetics, 2017, 54, 460-470.     | 1.5 | 190       |
| 28 | Recurrent 200-kb deletions of 16p11.2 that include the SH2B1 gene are associated with developmental delay and obesity. Genetics in Medicine, 2010, 12, 641-647.                   | 1.1 | 178       |
| 29 | Advancing epilepsy genetics in the genomic era. Genome Medicine, 2015, 7, 91.                                                                                                     | 3.6 | 173       |
| 30 | Mutations in the GABA Transporter SLC6A1 Cause Epilepsy with Myoclonic-Atonic Seizures. American<br>Journal of Human Genetics, 2015, 96, 808-815.                                 | 2.6 | 173       |
| 31 | The genetic landscape of infantile spasms. Human Molecular Genetics, 2014, 23, 4846-4858.                                                                                         | 1.4 | 156       |
| 32 | AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nature<br>Communications, 2019, 10, 3094.                                                        | 5.8 | 150       |
| 33 | The Genetics of Microdeletion and Microduplication Syndromes: An Update. Annual Review of Genomics and Human Genetics, 2014, 15, 215-244.                                         | 2.5 | 145       |
| 34 | Copy number variants are frequent in genetic generalized epilepsy with intellectual disability.<br>Neurology, 2013, 81, 1507-1514.                                                | 1.5 | 140       |
| 35 | Genetic and neurodevelopmental spectrum of <i>SYNGAP1</i> -associated intellectual disability and epilepsy. Journal of Medical Genetics, 2016, 53, 511-522.                       | 1.5 | 135       |
| 36 | Clinical phenotype of the recurrent 1q21.1 copy-number variant. Genetics in Medicine, 2016, 18, 341-349.                                                                          | 1.1 | 134       |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | <i>SYNGAP1</i> encephalopathy. Neurology, 2019, 92, e96-e107.                                                                                                                                        | 1.5  | 131       |
| 38 | A method for rapid, targeted CNV genotyping identifies rare variants associated with neurocognitive disease. Genome Research, 2009, 19, 1579-1585.                                                   | 2.4  | 118       |
| 39 | Mutations in <i><scp>KCNT</scp>1</i> cause a spectrum of focal epilepsies. Epilepsia, 2015, 56, e114-20.                                                                                             | 2.6  | 117       |
| 40 | <i>CHD2</i> variants are a risk factor for photosensitivity in epilepsy. Brain, 2015, 138, 1198-1208.                                                                                                | 3.7  | 112       |
| 41 | Targeted long-read sequencing identifies missing disease-causing variation. American Journal of<br>Human Genetics, 2021, 108, 1436-1449.                                                             | 2.6  | 105       |
| 42 | Parental Mosaicism in "De Novo―Epileptic Encephalopathies. New England Journal of Medicine, 2018,<br>378, 1646-1648.                                                                                 | 13.9 | 104       |
| 43 | Germline De Novo Mutations in GNB1 Cause Severe Neurodevelopmental Disability, Hypotonia, and<br>Seizures. American Journal of Human Genetics, 2016, 98, 1001-1010.                                  | 2.6  | 102       |
| 44 | <i>SCN8A</i> encephalopathy: Research progress and prospects. Epilepsia, 2016, 57, 1027-1035.                                                                                                        | 2.6  | 101       |
| 45 | Defining the phenotypic spectrum of <i>SLC6A1</i> mutations. Epilepsia, 2018, 59, 389-402.                                                                                                           | 2.6  | 99        |
| 46 | Not all <i>SCN1A</i> epileptic encephalopathies are Dravet syndrome. Neurology, 2017, 89, 1035-1042.                                                                                                 | 1.5  | 97        |
| 47 | The Genetic Landscape of Epilepsy of Infancy with Migrating Focal Seizures. Annals of Neurology, 2019,<br>86, 821-831.                                                                               | 2.8  | 96        |
| 48 | <i>TRIO</i> loss of function is associated with mild intellectual disability and affects dendritic branching and synapse function. Human Molecular Genetics, 2016, 25, 892-902.                      | 1.4  | 94        |
| 49 | Complex Compound Inheritance of Lethal Lung Developmental Disorders Due to Disruption of the TBX-FGF Pathway. American Journal of Human Genetics, 2019, 104, 213-228.                                | 2.6  | 90        |
| 50 | Mutations in <i>GABRB3</i> . Neurology, 2017, 88, 483-492.                                                                                                                                           | 1.5  | 87        |
| 51 | De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with<br>Contractures, Macrocephaly, and Dyskinesias. American Journal of Human Genetics, 2018, 103, 666-678. | 2.6  | 87        |
| 52 | GGC Repeat Expansion and Exon 1 Methylation of XYLT1 Is a Common Pathogenic Variant in<br>Baratela-Scott Syndrome. American Journal of Human Genetics, 2019, 104, 35-44.                             | 2.6  | 81        |
| 53 | <i>CHD2</i> myoclonic encephalopathy is frequently associated with self-induced seizures.<br>Neurology, 2015, 84, 951-958.                                                                           | 1.5  | 79        |
| 54 | Primer Part 1—The building blocks of epilepsy genetics. Epilepsia, 2016, 57, 861-868.                                                                                                                | 2.6  | 77        |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A populationâ€based costâ€effectiveness study of early genetic testing in severe epilepsies of infancy.<br>Epilepsia, 2018, 59, 1177-1187.                                                                                                            | 2.6 | 77        |
| 56 | Aberrant Inclusion of a Poison Exon Causes Dravet Syndrome and Related SCN1A-Associated Genetic Epilepsies. American Journal of Human Genetics, 2018, 103, 1022-1029.                                                                                 | 2.6 | 76        |
| 57 | Autism and developmental disability caused by <i>KCNQ3</i> gainâ€ofâ€function variants. Annals of Neurology, 2019, 86, 181-192.                                                                                                                       | 2.8 | 73        |
| 58 | De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain, 2018, 141, 698-712.                                                                                                                                                       | 3.7 | 72        |
| 59 | Dominant <i>KCNA2</i> mutation causes episodic ataxia and pharmacoresponsive epilepsy. Neurology, 2016, 87, 1975-1984.                                                                                                                                | 1.5 | 71        |
| 60 | Copy number variation analysis in singleâ€suture craniosynostosis: Multiple rare variants including<br><i>RUNX2</i> duplication in two cousins with metopic craniosynostosis. American Journal of Medical<br>Genetics, Part A, 2010, 152A, 2203-2210. | 0.7 | 69        |
| 61 | Seizures Are Regulated by Ubiquitin-specific Peptidase 9 X-linked (USP9X), a De-Ubiquitinase. PLoS<br>Genetics, 2015, 11, e1005022.                                                                                                                   | 1.5 | 66        |
| 62 | Epileptic spasms are a feature of <i>DEPDC5</i> mTORopathy. Neurology: Genetics, 2015, 1, e17.                                                                                                                                                        | 0.9 | 63        |
| 63 | 16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy. Human Molecular<br>Genetics, 2014, 23, 6069-6080.                                                                                                                 | 1.4 | 61        |
| 64 | Diagnostic implications of genetic copy number variation in epilepsy plus. Epilepsia, 2019, 60, 689-706.                                                                                                                                              | 2.6 | 61        |
| 65 | Exonâ€disrupting deletions of <scp><i>NRXN1</i></scp> in idiopathic generalized epilepsy. Epilepsia, 2013, 54, 256-264.                                                                                                                               | 2.6 | 59        |
| 66 | Mutations Affecting the SAND Domain of DEAF1 Cause Intellectual Disability with Severe Speech<br>Impairment and Behavioral Problems. American Journal of Human Genetics, 2014, 94, 649-661.                                                           | 2.6 | 59        |
| 67 | Copy number variant analysis from exome data in 349 patients with epileptic encephalopathy. Annals of Neurology, 2015, 78, 323-328.                                                                                                                   | 2.8 | 59        |
| 68 | Epilepsy and the new cytogenetics. Epilepsia, 2011, 52, 423-432.                                                                                                                                                                                      | 2.6 | 56        |
| 69 | Clinical phenotype of ASD-associated DYRK1A haploinsufficiency. Molecular Autism, 2017, 8, 54.                                                                                                                                                        | 2.6 | 55        |
| 70 | Comparative sequencing of a multicopy subtelomeric region containing olfactory receptor genes reveals multiple interactions between non-homologous chromosomes. Human Molecular Genetics, 2001, 10, 2363-2372.                                        | 1.4 | 51        |
| 71 | A targeted resequencing gene panel for focal epilepsy. Neurology, 2016, 86, 1605-1612.                                                                                                                                                                | 1.5 | 48        |
| 72 | De Novo Variants in the F-Box Protein FBXO11 in 20 Individuals with a Variable Neurodevelopmental<br>Disorder. American Journal of Human Genetics, 2018, 103, 305-316.                                                                                | 2.6 | 48        |

5

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | De novo mutations of <i>KIAA2022</i> in females cause intellectual disability and intractable epilepsy.<br>Journal of Medical Genetics, 2016, 53, 850-858.                                                   | 1.5 | 47        |
| 74 | Recent advances in epilepsy genomics and genetic testing. F1000Research, 2020, 9, 185.                                                                                                                       | 0.8 | 47        |
| 75 | Somatic mutation: The hidden genetics of brain malformations and focal epilepsies. Epilepsy Research, 2019, 155, 106161.                                                                                     | 0.8 | 45        |
| 76 | Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia. American Journal of<br>Human Genetics, 2019, 104, 948-956.                                                                 | 2.6 | 45        |
| 77 | A homozygous <i>B3GAT3</i> mutation causes a severe syndrome with multiple fractures, expanding the phenotype of linkeropathy syndromes. American Journal of Medical Genetics, Part A, 2015, 167, 2691-2696. | 0.7 | 44        |
| 78 | Severe infantile onset developmental and epileptic encephalopathy caused by mutations in autophagy gene <i><scp>WDR</scp>45</i> . Epilepsia, 2018, 59, e5-e13.                                               | 2.6 | 44        |
| 79 | <i>NBEA</i> : Developmental disease gene with early generalized epilepsy phenotypes. Annals of<br>Neurology, 2018, 84, 788-795.                                                                              | 2.8 | 44        |
| 80 | De Novo Mutations in PPP3CA Cause Severe Neurodevelopmental Disease with Seizures. American<br>Journal of Human Genetics, 2017, 101, 516-524.                                                                | 2.6 | 43        |
| 81 | Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nature Communications, 2019, 10, 4679.                                                             | 5.8 | 43        |
| 82 | Microdeletion syndromes. Current Opinion in Genetics and Development, 2013, 23, 232-239.                                                                                                                     | 1.5 | 42        |
| 83 | Genetic contribution to common epilepsies. Current Opinion in Neurology, 2011, 24, 140-145.                                                                                                                  | 1.8 | 41        |
| 84 | TANGO2: expanding the clinical phenotype and spectrum of pathogenic variants. Genetics in Medicine, 2019, 21, 601-607.                                                                                       | 1.1 | 41        |
| 85 | Further clinical and molecular delineation of the 15q24 microdeletion syndrome. Journal of Medical<br>Genetics, 2012, 49, 110-118.                                                                           | 1.5 | 40        |
| 86 | Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy. EMBO Molecular Medicine, 2015, 7, 1580-1594.                                      | 3.3 | 39        |
| 87 | Genetic heterogeneity in infantile spasms. Epilepsy Research, 2019, 156, 106181.                                                                                                                             | 0.8 | 38        |
| 88 | Genotype to phenotype—discovery and characterization of novel genomic disorders in a<br>"genotype-first―era. Genetics in Medicine, 2009, 11, 836-842.                                                        | 1.1 | 37        |
| 89 | Loss of function of the retinoid-related nuclear receptor (RORB) gene and epilepsy. European Journal of Human Genetics, 2016, 24, 1761-1770.                                                                 | 1.4 | 36        |
| 90 | The Impact of Rapid Exome Sequencing on Medical Management of Critically Ill Children. Journal of Pediatrics, 2020, 226, 202-212.e1.                                                                         | 0.9 | 35        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Intragenic deletions of <i>ALDH7A1</i> in pyridoxine-dependent epilepsy caused by <i>Alu</i> -<br><i>Alu</i> recombination. Neurology, 2015, 85, 756-762.                                                                | 1.5 | 34        |
| 92  | De novo loss-of-function mutations in WAC cause a recognizable intellectual disability syndrome and learning deficits in Drosophila. European Journal of Human Genetics, 2016, 24, 1145-1153.                            | 1.4 | 34        |
| 93  | The ClinGen Epilepsy Gene Curation Expert Panel—Bridging the divide between clinical domain<br>knowledge and formal gene curation criteria. Human Mutation, 2018, 39, 1476-1484.                                         | 1.1 | 33        |
| 94  | Expanding the genetic and phenotypic relevance of <i>KCNB1</i> variants in developmental and epileptic encephalopathies: 27 new patients and overview of the literature. Human Mutation, 2020, 41, 69-80.                | 1.1 | 33        |
| 95  | Cenetically complex epilepsies, copy number variants and syndrome constellations. Genome Medicine, 2010, 2, 71.                                                                                                          | 3.6 | 32        |
| 96  | A genotype-first approach identifies an intellectual disability-overweight syndrome caused by PHIP<br>haploinsufficiency. European Journal of Human Genetics, 2018, 26, 54-63.                                           | 1.4 | 32        |
| 97  | The severe epilepsy syndromes of infancy: A populationâ€based study. Epilepsia, 2021, 62, 358-370.                                                                                                                       | 2.6 | 31        |
| 98  | Next-Generation Sequencing in Intellectual Disability. Journal of Pediatric Genetics, 2015, 04, 128-135.                                                                                                                 | 0.3 | 30        |
| 99  | Expanding clinical phenotype in <i>CACNA1C</i> related disorders: From neonatal onset severe<br>epileptic encephalopathy to lateâ€onset epilepsy. American Journal of Medical Genetics, Part A, 2018, 176,<br>2733-2739. | 0.7 | 30        |
| 100 | ZMIZ1 Variants Cause a Syndromic Neurodevelopmental Disorder. American Journal of Human<br>Genetics, 2019, 104, 319-330.                                                                                                 | 2.6 | 30        |
| 101 | Absence seizures with intellectual disability as a phenotype of the 15q13.3 microdeletion syndrome.<br>Epilepsia, 2011, 52, e194-8.                                                                                      | 2.6 | 29        |
| 102 | CNVs in Epilepsy. Current Genetic Medicine Reports, 2014, 2, 162-167.                                                                                                                                                    | 1.9 | 28        |
| 103 | Severe neurocognitive and growth disorders due to variation in <i>THOC2</i> , an essential component of nuclear mRNA export machinery. Human Mutation, 2018, 39, 1126-1138.                                              | 1.1 | 28        |
| 104 | NEXMIF encephalopathy: an X-linked disorder with male and female phenotypic patterns. Genetics in Medicine, 2021, 23, 363-373.                                                                                           | 1.1 | 28        |
| 105 | Loss of function in <i>ROBO1</i> is associated with tetralogy of Fallot and septal defects. Journal of<br>Medical Genetics, 2017, 54, 825-829.                                                                           | 1.5 | 27        |
| 106 | Poison exons in neurodevelopment and disease. Current Opinion in Genetics and Development, 2020, 65, 98-102.                                                                                                             | 1.5 | 26        |
| 107 | Mutations of the Transcriptional Corepressor ZMYM2 Cause Syndromic Urinary Tract Malformations.<br>American Journal of Human Genetics, 2020, 107, 727-742.                                                               | 2.6 | 25        |
| 108 | Severe speech impairment is a distinguishing feature of <i>FOXP1</i> â€related disorder. Developmental<br>Medicine and Child Neurology, 2021, 63, 1417-1426.                                                             | 1.1 | 24        |

| #   | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Multiplex families with epilepsy. Neurology, 2016, 86, 713-722.                                                                                                                                            | 1.5 | 23        |
| 110 | Recurrent duplications of 17q12 associated with variable phenotypes. American Journal of Medical Genetics, Part A, 2015, 167, 3038-3045.                                                                   | 0.7 | 22        |
| 111 | Clinical Genetic Testing in Epilepsy. Epilepsy Currents, 2015, 15, 197-201.                                                                                                                                | 0.4 | 22        |
| 112 | Clinical Phenotypes of Carriers of Mutations in CHD8 or Its Conserved Target Genes. Biological Psychiatry, 2020, 87, 123-131.                                                                              | 0.7 | 22        |
| 113 | lterative phenotyping of 15q11.2, 15q13.3 and 16p13.11 microdeletion carriers in pediatric epilepsies.<br>Epilepsy Research, 2014, 108, 109-116.                                                           | 0.8 | 21        |
| 114 | Pathogenic Variants in CEP85L Cause Sporadic and Familial Posterior Predominant Lissencephaly.<br>Neuron, 2020, 106, 237-245.e8.                                                                           | 3.8 | 21        |
| 115 | The epilepsy phenotypic spectrum associated with a recurrent <i>CUX2</i> variant. Annals of Neurology, 2018, 83, 926-934.                                                                                  | 2.8 | 20        |
| 116 | De novo and biallelic DEAF1 variants cause a phenotypic spectrum. Genetics in Medicine, 2019, 21, 2059-2069.                                                                                               | 1.1 | 20        |
| 117 | De novo variants in SNAP25 cause an early-onset developmental and epileptic encephalopathy. Genetics in Medicine, 2021, 23, 653-660.                                                                       | 1.1 | 20        |
| 118 | Genetic investigations of the epileptic encephalopathies. Progress in Brain Research, 2016, 226, 35-60.                                                                                                    | 0.9 | 19        |
| 119 | Biallelic <i>PI4KA</i> variants cause a novel neurodevelopmental syndrome with hypomyelinating leukodystrophy. Brain, 2021, 144, 2659-2669.                                                                | 3.7 | 19        |
| 120 | Epilepsy due to 20q13.33 subtelomere deletion masquerading as pyridoxineâ€dependent epilepsy. American<br>Journal of Medical Genetics, Part A, 2012, 158A, 3190-3195.                                      | 0.7 | 18        |
| 121 | Deletions of 16p11.2 and 19p13.2 in a family with intellectual disability and generalized epilepsy.<br>American Journal of Medical Genetics, Part A, 2013, 161, 1722-1725.                                 | 0.7 | 18        |
| 122 | <i><scp>BRAT</scp>1</i> encephalopathy: a recessive cause of epilepsy of infancy with migrating focal seizures. Developmental Medicine and Child Neurology, 2020, 62, 1096-1099.                           | 1.1 | 18        |
| 123 | Bi-allelic Loss-of-Function Variants in NUP188 Cause a Recognizable Syndrome Characterized by<br>Neurologic, Ocular, and Cardiac Abnormalities. American Journal of Human Genetics, 2020, 106,<br>623-631. | 2.6 | 18        |
| 124 | Genetic literacy series: Primer part 2—Paradigm shifts in epilepsy genetics. Epilepsia, 2018, 59, 1138-1147.                                                                                               | 2.6 | 17        |
| 125 | Developmental and epilepsy spectrum of <i>KCNB1</i> encephalopathy with longâ€ŧerm outcome.<br>Epilepsia, 2020, 61, 2461-2473.                                                                             | 2.6 | 17        |
| 126 | The unexpected role of copy number variations in juvenile myoclonic epilepsy. Epilepsy and Behavior, 2013, 28, S66-S68.                                                                                    | 0.9 | 16        |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Investigating the genetic basis of feverâ€associated syndromic epilepsies using copy number variation analysis. Epilepsia, 2015, 56, e26-32.                                                                                                                      | 2.6 | 16        |
| 128 | Levetiracetam efficacy in PCDH19 Girls Clustering Epilepsy. European Journal of Paediatric Neurology, 2020, 24, 142-147.                                                                                                                                          | 0.7 | 16        |
| 129 | Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome. American Journal of Human Genetics, 2022, 109, 601-617.                                                                                            | 2.6 | 16        |
| 130 | Five patients with a chromosome 1q21.1 triplication show macrocephaly, increased weight and facial similarities. European Journal of Medical Genetics, 2015, 58, 503-508.                                                                                         | 0.7 | 15        |
| 131 | Missense variants in <i>CTNNB1</i> can be associated with vitreoretinopathy—Seven new cases of <i>CTNNB1</i> â€associated neurodevelopmental disorder including a previously unreported retinal phenotype. Molecular Genetics & Genomic Medicine, 2021, 9, e1542. | 0.6 | 15        |
| 132 | Inherited <i>RORB</i> pathogenic variants: Overlap of photosensitive genetic generalized and occipital lobe epilepsy. Epilepsia, 2020, 61, e23-e29.                                                                                                               | 2.6 | 14        |
| 133 | The epileptology of GNB5 encephalopathy. Epilepsia, 2019, 60, e121-e127.                                                                                                                                                                                          | 2.6 | 13        |
| 134 | Variants in GNAI1 cause a syndrome associated with variable features including developmental delay, seizures, and hypotonia. Genetics in Medicine, 2021, 23, 881-887.                                                                                             | 1.1 | 13        |
| 135 | Copy Number Matters in Epilepsy. Epilepsy Currents, 2015, 15, 180-182.                                                                                                                                                                                            | 0.4 | 12        |
| 136 | Dravet syndrome in South African infants: Tools for an early diagnosis. Seizure: the Journal of the<br>British Epilepsy Association, 2018, 62, 99-105.                                                                                                            | 0.9 | 12        |
| 137 | Beyond the single nucleotide variant in epilepsy genetics. Nature Reviews Neurology, 2014, 10, 490-491.                                                                                                                                                           | 4.9 | 11        |
| 138 | Description of a new oncogenic mechanism for atypical teratoid rhabdoid tumors in patients with ring chromosome 22. American Journal of Medical Genetics, Part A, 2017, 173, 245-249.                                                                             | 0.7 | 11        |
| 139 | Developmental and epileptic encephalopathy: Personal utility of a genetic diagnosis for families.<br>Epilepsia Open, 2021, 6, 149-159.                                                                                                                            | 1.3 | 11        |
| 140 | The Road to Diagnosis: Shortening the Diagnostic Odyssey in Epilepsy. Epilepsy Currents, 2019, 19, 307-309.                                                                                                                                                       | 0.4 | 10        |
| 141 | The phenotypic spectrum of Xâ€linked, infantile onset <i>ALG13</i> â€related developmental and epileptic<br>encephalopathy. Epilepsia, 2021, 62, 325-334.                                                                                                         | 2.6 | 10        |
| 142 | 2014 Epilepsy Benchmarks Area I: Understanding the Causes of the Epilepsies and Epilepsy-Related Neurologic, Psychiatric, and Somatic Conditions. Epilepsy Currents, 2016, 16, 182-186.                                                                           | 0.4 | 9         |
| 143 | Return of individual results in epilepsy genomic research: A view from the field. Epilepsia, 2018, 59, 1635-1642.                                                                                                                                                 | 2.6 | 9         |
| 144 | Three novel patients with epileptic encephalopathy due to biallelic mutations in the <scp><i>PLCB1</i></scp> gene. Clinical Genetics, 2020, 97, 477-482.                                                                                                          | 1.0 | 9         |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Epilepsy Benchmarks Area III: Improved Treatment Options for Controlling Seizures and Epilepsy-Related Conditions Without Side Effects. Epilepsy Currents, 2020, 20, 23S-30S.                                          | 0.4 | 9         |
| 146 | 15q13.3 microdeletions in a prospectively recruited cohort of patients with idiopathic generalized epilepsy in Bulgaria. Epilepsy Research, 2013, 104, 241-245.                                                        | 0.8 | 8         |
| 147 | <i>FBXO28</i> causes developmental and epileptic encephalopathy with profound intellectual disability. Epilepsia, 2021, 62, e13-e21.                                                                                   | 2.6 | 8         |
| 148 | Phenotypic Spectrum of Seizure Disorders in MBD5-Associated Neurodevelopmental Disorder.<br>Neurology: Genetics, 2021, 7, e579.                                                                                        | 0.9 | 8         |
| 149 | Association of ultraâ€rare coding variants with genetic generalized epilepsy: A case–control whole exome sequencing study. Epilepsia, 2022, 63, 723-735.                                                               | 2.6 | 8         |
| 150 | Biallelic <i>ADAM22</i> pathogenic variants cause progressive encephalopathy and infantile-onset refractory epilepsy. Brain, 2022, 145, 2301-2312.                                                                     | 3.7 | 8         |
| 151 | A de novo inâ€frame deletion of <i>CASK</i> gene causes early onset infantile spasms and supratentorial cerebral malformation in a female patient. American Journal of Medical Genetics, Part A, 2018, 176, 2425-2429. | 0.7 | 7         |
| 152 | Double somatic mosaicism in a child with Dravet syndrome. Neurology: Genetics, 2019, 5, e333.                                                                                                                          | 0.9 | 7         |
| 153 | Reanalysis and optimisation of bioinformatic pipelines is critical for mutation detection. Human Mutation, 2019, 40, 374-379.                                                                                          | 1.1 | 7         |
| 154 | Rare variants in KDR, encoding VEGF Receptor 2, are associated with tetralogy of Fallot. Genetics in<br>Medicine, 2021, 23, 1952-1960.                                                                                 | 1.1 | 7         |
| 155 | Pathogenic <scp><i>MAST3</i></scp> Variants in the <scp>STK</scp> Domain Are Associated with Epilepsy. Annals of Neurology, 2021, 90, 274-284.                                                                         | 2.8 | 7         |
| 156 | Evaluation of multiple putative risk alleles within the 15q13.3 region for genetic generalized epilepsy.<br>Epilepsy Research, 2015, 117, 70-73.                                                                       | 0.8 | 6         |
| 157 | <i>De novo FZR1</i> loss-of-function variants cause developmental and epileptic encephalopathies.<br>Brain, 2022, 145, 1684-1697.                                                                                      | 3.7 | 5         |
| 158 | <i>SCN1A</i> mutations in focal epilepsy with auditory features: widening the spectrum of GEFS <i>plus</i> . Epileptic Disorders, 2019, 21, 185-191.                                                                   | 0.7 | 5         |
| 159 | Clarifying the role of the 22q11.2 microdeletion in juvenile myoclonic epilepsy. Epilepsy and Behavior, 2013, 29, 589-590.                                                                                             | 0.9 | 4         |
| 160 | Expanding role of GABAA receptors in generalised epilepsies. Lancet Neurology, The, 2018, 17, 657-658.                                                                                                                 | 4.9 | 4         |
| 161 | Genetic convergence of developmental and epileptic encephalopathies and intellectual disability.<br>Developmental Medicine and Child Neurology, 2021, 63, 1441-1447.                                                   | 1.1 | 4         |
| 162 | Diagnostic Considerations in the Epilepsies—Testing Strategies, Test Type Advantages, and Limitations.<br>Neurotherapeutics, 2021, 18, 1468-1477.                                                                      | 2.1 | 4         |

| #   | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | A recurrent, de novo pathogenic variant in ARPC4 disrupts actin filament formation and causes a<br>neurodevelopmental disorder with microcephaly and speech delay. Human Genetics and Genomics<br>Advances, 2021, 3, 100072. | 1.0 | 4         |
| 164 | Genome sequencing reveals novel noncoding variants in <scp><i>PLA2G6</i></scp> and<br><scp><i>LMNB1</i></scp> causing progressive neurologic disease. Molecular Genetics & Genomic<br>Medicine, 2022, 10, e1892.             | 0.6 | 4         |
| 165 | Copy number variants in the population: Unselected does not mean unaffected. Epilepsy Currents, 2016, 16, 91-93.                                                                                                             | 0.4 | 3         |
| 166 | Mutations of the DNA repair gene PNKP in a patient with microcephaly, seizures, and developmental delay (MCSZ) presenting with a high-grade brain tumor. Scientific Reports, 2022, 12, 5386.                                 | 1.6 | 3         |
| 167 | Phenotype to Genotype and Back Again. Epilepsy Currents, 2020, 20, 88-89.                                                                                                                                                    | 0.4 | 1         |
| 168 | Shedding Light on the Genomeâ $\in$ ${}^{\mathrm{M}}$ s Dark Matter. Science Translational Medicine, 2014, 6, .                                                                                                              | 5.8 | 1         |
| 169 | Mosaicism in clinical genetics. Journal of Physical Education and Sports Management, 2021, 7, a006162.                                                                                                                       | 0.5 | 1         |
| 170 | Thinking about cognition and epilepsy. Epilepsy and Behavior, 2014, 41, 276.                                                                                                                                                 | 0.9 | 0         |
| 171 | Finding the Missing Pieces: The Microdeletion Burden in GGE. Epilepsy Currents, 2016, 16, 16-17.                                                                                                                             | 0.4 | Ο         |
| 172 | Antiepileptic Drugs as Teratogens: The Mechanism Remains a Mystery. Epilepsy Currents, 2020, 20, 365-366.                                                                                                                    | 0.4 | 0         |
| 173 | SNFing for Clues to the Genetics of Autism. Science Translational Medicine, 2014, 6, .                                                                                                                                       | 5.8 | Ο         |
| 174 | "Brain-Critical―Exons in Autism. Science Translational Medicine, 2014, 6, .                                                                                                                                                  | 5.8 | 0         |
| 175 | What's Your Attitude?. Science Translational Medicine, 2014, 6, .                                                                                                                                                            | 5.8 | Ο         |
| 176 | Journey to the Center of the Cause. Science Translational Medicine, 2015, 7, .                                                                                                                                               | 5.8 | 0         |
| 177 | Patchwork people: A role for somatic mutations in brain malformations. Science Translational Medicine, 2015, 7, .                                                                                                            | 5.8 | 0         |