Michael J Young

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10473779/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Safe GDNF and GDNF/BDNF Controlled Delivery System Improves Migration in Human Retinal Pigment Epithelial Cells and Survival in Retinal Ganglion Cells: Potential Usefulness in Degenerative Retinal Pathologies. Pharmaceuticals, 2021, 14, 50.	3.8	9
2	Enhanced migration of engrafted retinal progenitor cells into the host retina via disruption of glial barriers. Molecular Vision, 2021, 27, 300-308.	1.1	0
3	In Situ Cross-linking Hydrogel as a Vehicle for Retinal Progenitor Cell Transplantation. Cell Transplantation, 2019, 28, 596-606.	2.5	28
4	Interphotoreceptor matrix based biomaterial: Impact on human retinal progenitor cell attachment and differentiation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 891-899.	3.4	9
5	Decellularized retinal matrix: Natural platforms for human retinal progenitor cell culture. Acta Biomaterialia, 2016, 31, 61-70.	8.3	48
6	Enhanced Differentiation and Delivery of Mouse Retinal Progenitor Cells Using a Micropatterned Biodegradable Thin-Film Polycaprolactone Scaffold. Tissue Engineering - Part A, 2015, 21, 1247-1260.	3.1	44
7	Low-Oxygen Culture Conditions Extend the Multipotent Properties of Human Retinal Progenitor Cells. Tissue Engineering - Part A, 2014, 20, 1465-1475.	3.1	43
8	Approaches to Cell Delivery: Substrates and Scaffolds for Cell Therapy. Developments in Ophthalmology, 2014, 53, 143-154.	0.1	32
9	High-throughput screening for directed chemotaxis of retinal progenitor cells in 3D hydrogels. , 2014, , .		0
10	Functional and morphological analysis of the subretinal injection of human retinal progenitor cells under Cyclosporin A treatment. Molecular Vision, 2014, 20, 1271-80.	1.1	11
11	The Application of Hyaluronic Acid Hydrogels to Retinal Progenitor Cell Transplantation. Tissue Engineering - Part A, 2013, 19, 135-142.	3.1	62
12	Use of a Synthetic Xeno-Free Culture Substrate for Induced Pluripotent Stem Cell Induction and Retinal Differentiation. Stem Cells Translational Medicine, 2013, 2, 16-24.	3.3	89
13	Retinal Pigment Epithelium and Müller Progenitor Cell Interaction Increase Müller Progenitor Cell Expression of PDGFR and Ability to Induce Proliferative Vitreoretinopathy in a Rabbit Model. Stem Cells International, 2012, 2012, 1-6.	2.5	14
14	Advances in Retinal Tissue Engineering. Materials, 2012, 5, 108-120.	2.9	28
15	Monitoring Morphological Changes in the Retina of Rhodopsin ^{â^'/â^'} Mice with Spectral Domain Optical Coherence Tomography. , 2012, 53, 3967.		19
16	Microfabrication of a Three-Dimensional Polycaprolactone Thin-Film Scaffold for Retinal Progenitor Cell Encapsulation. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 443-456.	3.5	52
17	Xenotransplantation of Human Neural Progenitor Cells to the Subretinal Space of Nonimmunosuppressed Pigs. Journal of Transplantation, 2011, 2011, 1-6.	0.5	11
18	Transplantation of Adult Mouse iPS Cell-Derived Photoreceptor Precursors Restores Retinal Structure and Function in Degenerative Mice. PLoS ONE, 2011, 6, e18992.	2.5	283

MICHAEL J YOUNG

#	Article	IF	CITATIONS
19	Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. Journal of Controlled Release, 2011, 156, 92-100.	9.9	89
20	Robust cell integration from co-transplantation of biodegradable MMP2-PLGA microspheres with retinal progenitor cells. Biomaterials, 2011, 32, 1041-1050.	11.4	70
21	Synthetic Polymer Scaffolds for Stem Cell Transplantation in Retinal Tissue Engineering. Polymers, 2011, 3, 899-914.	4.5	51
22	Combining chondroitinase ABC and growth factors promotes the integration of murine retinal progenitor cells transplanted into Rho(-/-) mice. Molecular Vision, 2011, 17, 1759-70.	1.1	36
23	The use of progenitor cell/biodegradable MMP2–PLGA polymer constructs to enhance cellular integration and retinal repopulation. Biomaterials, 2010, 31, 9-19.	11.4	90
24	Tissue engineering for the treatment of age-related macular degeneration. Expert Review of Ophthalmology, 2010, 5, 587-590.	0.6	0
25	Cellular repopulation of the retina. , 2010, , 607-611.		0
26	Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials, 2009, 30, 3405-3414.	11.4	158
27	Müller cell activation, proliferation and migration following laser injury. Molecular Vision, 2009, 15, 1886-96.	1.1	52
28	Sequential changes in the gene expression profile of murine retinal progenitor cells during the induction of differentiation. Molecular Vision, 2009, 15, 2111-22.	1.1	18
29	Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold. Journal of Ocular Biology, Diseases, and Informatics, 2008, 1, 19-29.	0.2	119
30	A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials, 2008, 29, 418-426.	11.4	131
31	Elevated MMP Expression in the MRL Mouse Retina Creates a Permissive Environment for Retinal Regeneration. , 2008, 49, 1686.		49
32	Proteomic Differentiation Between Murine Retinal and Brain-Derived Progenitor Cells. Stem Cells and Development, 2008, 17, 119-132.	2.1	5
33	Toll-like receptor 4 restricts retinal progenitor cell proliferation. Journal of Cell Biology, 2008, 183, 393-400.	5.2	67
34	Isolation of Progenitor Cells from GFP-Transgenic Pigs and Transplantation to the Retina of Allorecipients. Cloning and Stem Cells, 2008, 10, 391-402.	2.6	51
35	Endogenous VEGF Is Required for Visual Function: Evidence for a Survival Role on Müller Cells and Photoreceptors. PLoS ONE, 2008, 3, e3554.	2.5	537
36	Toll-like receptor 4 restricts retinal progenitor cell proliferation. Journal of Experimental Medicine, 2008, 205, i26-i26.	8.5	0

Michael J Young

#	Article	IF	CITATIONS
37	Retinal Transplantation. , 2007, 92, 300-316.		6
38	CNS Progenitor Cells Promote a Permissive Environment for Neurite Outgrowth via a Matrix Metalloproteinase-2-Dependent Mechanism. Journal of Neuroscience, 2007, 27, 4499-4506.	3.6	106
39	Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly(methyl methacrylate) scaffolds to the subretinal space. Lab on A Chip, 2007, 7, 695.	6.0	125
40	Neural Progenitor Cells Lack Immunogenicity and Resist Destruction as Allografts. Ocular Immunology and Inflammation, 2007, 15, 261-273.	1.8	23
41	Progenitor Cells from the Porcine Neural Retina Express Photoreceptor Markers After Transplantation to the Subretinal Space of Allorecipients. Stem Cells, 2007, 25, 1222-1230.	3.2	95
42	Creating an Immune-Privileged Site Using Retinal Progenitor Cells and Biodegradable Polymers. Stem Cells, 2007, 25, 1552-1559.	3.2	20
43	Neural precursors isolated from the developing cat brain show retinal integration following transplantation to the retina of the dystrophic cat. Veterinary Ophthalmology, 2007, 10, 245-253.	1.0	36
44	Retinal Progenitor Cell Xenografts to the Pig Retina: Immunological Reactions. Cell Transplantation, 2006, 15, 603-612.	2.5	32
45	A Comparison of Neural Differentiation and Retinal Transplantation with Bone Marrowâ€Derived Cells and Retinal Progenitor Cells. Stem Cells, 2006, 24, 2270-2278.	3.2	83
46	Sorbitol causes preferential selection of Muller glial precursors from late retinal progenitor cells in vitro. Molecular Vision, 2006, 12, 1606-14.	1.1	10
47	Retinal Progenitor Cell Xenografts to the Pig Retina. JAMA Ophthalmology, 2005, 123, 1385.	2.4	62
48	Effects of Ciliary Neurotrophic Factor on Differentiation of Late Retinal Progenitor Cells. Stem Cells, 2005, 23, 424-432.	3.2	34
49	Expression of Neurodevelopmental Markers by Cultured Porcine Neural Precursor Cells. Stem Cells, 2005, 23, 1286-1294.	3.2	54
50	Biodegradable Polymer Composite Grafts Promote the Survival and Differentiation of Retinal Progenitor Cells. Stem Cells, 2005, 23, 1579-1588.	3.2	188
51	Stem cells in the mammalian eye: a tool for retinal repair. Apmis, 2005, 113, 845-857.	2.0	41
52	Tissue Bioengineering. JAMA Ophthalmology, 2005, 123, 1725.	2.4	14
53	Stem cells and retinal repair. Progress in Retinal and Eye Research, 2004, 23, 149-181.	15.5	149
54	lsolation of retinal progenitor cells from post-mortem human tissue and comparison with autologous brain progenitors. Journal of Neuroscience Research, 2004, 77, 334-343.	2.9	107

MICHAEL J YOUNG

#	Article	IF	CITATIONS
55	Multipotent Retinal Progenitors Express Developmental Markers, Differentiate into Retinal Neurons, and Preserve Light-Mediated Behavior. , 2004, 45, 4167.		310
56	Neural Progenitor Cells Lack Immunogenicity and Resist Destruction as Allografts. Stem Cells, 2003, 21, 405-416.	3.2	157
57	The immunological properties of adult hippocampal progenitor cells. Vision Research, 2003, 43, 947-956.	1.4	34
58	Retinal transplantation of neural progenitor cells derived from the brain of GFP transgenic mice. Vision Research, 2003, 43, 1699-1708.	1.4	45
59	Expression of cytokines by multipotent neural progenitor cells. Cytokine, 2003, 22, 101-106.	3.2	85
60	Incorporation of Murine Brain Progenitor Cells into the Developing Mammalian Retina. , 2003, 44, 426.		97
61	Allogeneic Neonatal Neuronal Retina Grafts Display Partial Immune Privilege in the Subcapsular Space of the Kidney. Journal of Immunology, 2002, 169, 5601-5606.	0.8	19
62	Photoreceptor rescue after low-dose intravitreal IL- $1\hat{l}^2$ Injection in the RCS Rat. Experimental Eye Research, 2001, 73, 557-568.	2.6	26
63	Graft Location Affects Functional Rescue Following RPE Cell Transplantation in the RCS Rat. Experimental Neurology, 2001, 169, 114-121.	4.1	16
64	Surface markers expressed by multipotent human and mouse neural progenitor cells include tetraspanins and non-protein epitopes. Neuroscience Letters, 2001, 312, 180-182.	2.1	97
65	Transplantation of Human Neural Progenitor Cells to the Vitreous Cavity of the Royal College of Surgeons Rat. Cell Transplantation, 2001, 10, 223-233.	2.5	31
66	Systemic Immune Deviation in the Brain That Does Not Depend on the Integrity of the Blood-Brain Barrier. Journal of Immunology, 2000, 164, 5125-5131.	0.8	78
67	Neuronal Differentiation and Morphological Integration of Hippocampal Progenitor Cells Transplanted to the Retina of Immature and Mature Dystrophic Rats. Molecular and Cellular Neurosciences, 2000, 16, 197-205.	2.2	315
68	The retinal ganglion cells that drive the pupilloconstrictor response in rats. Brain Research, 1998, 787, 191-202.	2.2	33
69	Parameters of transplant-mediated pupilloconstriction in rats with unilateral olivary pretectal lesions. , 1997, 388, 327-335.		3
70	Interactive Events Subserving the Pupillary Light Reflex in Pigmented and Albino Rats. European Journal of Neuroscience, 1995, 7, 2053-2063.	2.6	18
71	Integrity of the blood-brain barrier in retinal xenografts is correlated with the immunological status of the host. Journal of Comparative Neurology, 1989, 283, 107-117.	1.6	34