Joseph Bonaventura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10473073/publications.pdf

Version: 2024-02-01

236833 395590 5,039 37 25 33 citations h-index g-index papers 37 37 37 3207 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Parallel assay of oxygen equilibria of hemoglobin. Analytical Biochemistry, 2013, 441, 63-68.	1.1	16
2	Nitric-oxide Synthase Forms N-NO-pterin and S-NO-Cys. Journal of Biological Chemistry, 2010, 285, 31581-31589.	1.6	36
3	Barnacle cement: a polymerization model based on evolutionary concepts. Journal of Experimental Biology, 2009, 212, 3499-3510.	0.8	131
4	Clinical implications of the loss of vasoactive nitric oxide during red blood cell storage. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19165-19166.	3.3	36
5	S-Nitrosylation-induced Conformational Change in Blackfin Tuna Myoglobin. Journal of Biological Chemistry, 2007, 282, 19773-19780.	1.6	53
6	Invertebrate hemoglobins and nitric oxide: How heme pocket structure controls reactivity. Journal of Inorganic Biochemistry, 2005, 99, 903-911.	1.5	18
7	Oxygen Regulation of Tumor Perfusion by S -Nitrosohemoglobin Reveals a Pressor Activity of Nitric Oxide. Circulation Research, 2005, 96, 1119-1126.	2.0	42
8	NO and superoxide: Opposite ends of the seesaw in cardiac contractility. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16403-16404.	3.3	20
9	S-Nitrosohemoglobin: an allosteric mediator of NO group function in mammalian vasculature. Free Radical Biology and Medicine, 2004, 37, 442-453.	1.3	26
10	Nitric Oxide, Invertebrates and Hemoglobin 1. American Zoologist, 2001, 41, 346-359.	0.7	5
11	Nitric Oxide, Invertebrates and Hemoglobin. American Zoologist, 2001, 41, 346-359.	0.7	2
12	NO is necessary and sufficient for egg activation at fertilization. Nature, 2000, 406, 633-636.	13.7	156
13	Functional Coupling of Oxygen Binding and Vasoactivity in S-Nitrosohemoglobin. Journal of Biological Chemistry, 2000, 275, 16738-16745.	1.6	128
13		1.6	128
	Biological Chemistry, 2000, 275, 16738-16745. Internal Electron Transfer between Hemes and Cu(II) Bound at Cysteine Î ² 93 Promotes Methemoglobin		
14	Biological Chemistry, 2000, 275, 16738-16745. Internal Electron Transfer between Hemes and Cu(II) Bound at Cysteine Î ² 93 Promotes Methemoglobin Reduction by Carbon Monoxide. Journal of Biological Chemistry, 1999, 274, 5499-5507.	1.6	26
14 15	Biological Chemistry, 2000, 275, 16738-16745. Internal Electron Transfer between Hemes and Cu(II) Bound at Cysteine β93 Promotes Methemoglobin Reduction by Carbon Monoxide. Journal of Biological Chemistry, 1999, 274, 5499-5507. Ascaris haemoglobin is a nitric oxide-activated †deoxygenase'. Nature, 1999, 401, 497-502. Blood Flow Regulation by S-Nitrosohemoglobin in the Physiological Oxygen Gradient. Science, 1997,	1.6 13.7	26 215

#	Article	IF	Citations
19	Crystal structure of deoxygenated $\langle i \rangle$ limulus polyphemus $\langle i \rangle$ subunit II hemocyanin at 2.18 \tilde{A} resolution: Clues for a mechanism for allosteric regulation. Protein Science, 1993, 2, 597-619.	3.1	301
20	Self-association and oxygen-binding characteristics of the isolated subunits of Limulus polyphemus hemocyanin. Archives of Biochemistry and Biophysics, 1984, 230, 238-249.	1.4	33
21	Quaternary structure of Limulus polyphemus hemocyanin. Biochemistry, 1983, 22, 5573-5583.	1.2	52
22	Metal ion interactions with Limulus polyphemus and Callinectes sapidus hemocyanin: stoichiometry and structural and functional consequences of calcium(II), cadmium(II), zinc(II), and mercury(II) binding. Biochemistry, 1983, 22, 4713-4723.	1.2	39
23	The complete amino acid sequence of bovine liver catalase and the partial sequence of bovine erythrocyte catalase. Archives of Biochemistry and Biophysics, 1982, 214, 397-421.	1.4	120
24	The partial amino acid sequence of human erythrocyte catalase. Archives of Biochemistry and Biophysics, 1982, 214, 422-424.	1.4	19
25	Effects of Anions and CO2 on the Dissociation of Liganded-Human Hemoglobin and Human Hemoglobin Variants. , 1982, , 257-261.		0
26	Subunit composition of a high molecular weight oligomer: Limulus polyphemus hemocyanin. Archives of Biochemistry and Biophysics, 1981, 210, 748-761.	1.4	49
27	Competition in Oxygen-Linked Anion Binding to Normal and Variant Human Hemoglobins. Hemoglobin, 1980, 4, 275-289.	0.4	9
28	ANIONIC CONTROL OF HEMOGLOBIN FUNCTION., 1978, , 647-663. HEMOGLOBIN ENGINEERING: CONSEQUENCES OF ALTERATIONS AT FUNCTIONALLY SENSITIVE SITES.		21
29	PARTICULARLY SUSCEPTIBLE TO CHEMICAL OR ENZYMATIC ATTACK11This work was supported in part by National Institutes of Health Research Grant HL-15460 and National Science Foundation Grant BMS 73-01695 and NATO Grant Number 866. Joseph Bonaventura is an Established Investigator of the American Heart Association. George Lapennas is supported by Training Grant HL 07057-03, 1978,		0
30	109-122. Oxygen binding by Limulus polyphemus hemocyanin: allosteric modulation by chloride ions. Biochemistry, 1977, 16, 3897-3902.	1.2	51
31	Identification of Chloride-Binding Sites in Hemoglobin by Nuclear-Magnetic-Resonance Quadrupole-Relaxation Studies of Hemoglobin Digests. FEBS Journal, 1975, 55, 385-390.	0.2	91
32	Carbon monoxide binding by hemocyanins of Limulus polyphemus, Busycon carica, and Callinectes sapidus. Biochemistry, 1974, 13, 4784-4789.	1.2	82
33	Nuclear magnetic resonance quadrupole relaxation study of chloride binding to hemoglobin abruzzo (α2Aβ2143 His → Arg). Biochimica Et Biophysica Acta (BBA) - Protein Structure, 1974, 336, 403-406.	1.7	16
34	Functional properties of carboxypeptidase-digested hemoglobins. Journal of Molecular Biology, 1974, 82, 499-511.	2.0	46
35	Effect of Heme and Non-Heme Ligands on Subunit Dissociation of Normal and Carboxypeptidase-digested Hemoglobin. Journal of Biological Chemistry, 1974, 249, 5689-5694.	1.6	33
36	Human erythrocyte catalase: An improved method of isolation and a reevaluation of reported properties. Archives of Biochemistry and Biophysics, 1972, 150, 606-617.	1.4	172

ARTICLE IF CITATIONS

The Main Players: Hemoglobin and Myoglobin; Nitric Oxide and Oxygen., 0,, 47-62. 2