Caroline A Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10471883/publications.pdf

Version: 2024-02-01

24 papers 4,219 citations

471509 17 h-index 610901 24 g-index

25 all docs

25 docs citations

25 times ranked

5034 citing authors

#	Article	IF	CITATIONS
1	In Vitro Assessment of the Drug–Drug Interaction Potential of Verinurad and Its Metabolites as Substrates and Inhibitors of Metabolizing Enzymes and Drug Transporters. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 108-123.	2.5	3
2	Lesinurad: Evaluation of Pharmacokinetic and Pharmacodynamic Interactions With Warfarin in Healthy Volunteers. Clinical Pharmacology in Drug Development, 2019, 8, 657-663.	1.6	3
3	Effects of Food and Antacids on Pharmacokinetics and Pharmacodynamics of Lesinurad, a Selective Urate Reabsorption Inhibitor. Clinical Pharmacology in Drug Development, 2019, 8, 647-656.	1.6	3
4	Metabolism and Disposition of Verinurad, a Uric Acid Reabsorption Inhibitor, in Humans. Drug Metabolism and Disposition, 2018, 46, 532-541.	3.3	11
5	Transporter Expression in Noncancerous and Cancerous Liver Tissue from Donors with Hepatocellular Carcinoma and Chronic Hepatitis C Infection Quantified by LC-MS/MS Proteomics. Drug Metabolism and Disposition, 2018, 46, 189-196.	3.3	43
6	Effect of Renal Impairment on the Pharmacokinetics and Pharmacodynamics of Verinurad, a Selective Uric Acid Reabsorption Inhibitor. Clinical Drug Investigation, 2018, 38, 703-713.	2.2	7
7	Effects of renal function on pharmacokinetics and pharmacodynamics of lesinurad in adult volunteers. Drug Design, Development and Therapy, 2016, Volume 10, 3555-3562.	4.3	24
8	Breast Cancer Resistance Protein (ABCG2) in Clinical Pharmacokinetics and Drug Interactions: Practical Recommendations for Clinical Victim and Perpetrator Drug-Drug Interaction Study Design. Drug Metabolism and Disposition, 2015, 43, 490-509.	3.3	116
9	Application of Receiver Operating Characteristic Analysis to Refine the Prediction of Potential Digoxin Drug Interactions. Drug Metabolism and Disposition, 2013, 41, 1367-1374.	3.3	41
10	In Vitro Characterization of Axitinib Interactions with Human Efflux and Hepatic Uptake Transporters: Implications for Disposition and Drug Interactions. Drug Metabolism and Disposition, 2013, 41, 1575-1583.	3.3	40
11	Identifying a Selective Substrate and Inhibitor Pair for the Evaluation of CYP2J2 Activity. Drug Metabolism and Disposition, 2012, 40, 943-951.	3.3	78
12	Response from the International Transporter Consortium. Nature Reviews Drug Discovery, 2011, 10, 75-75.	46.4	5
13	Digoxin Is Not a Substrate for Organic Anion-Transporting Polypeptide Transporters OATP1A2, OATP1B1, OATP1B3, and OATP2B1 but Is a Substrate for a Sodium-Dependent Transporter Expressed in HEK293 Cells. Drug Metabolism and Disposition, 2011, 39, 2093-2102.	3.3	64
14	Membrane transporters in drug development. Nature Reviews Drug Discovery, 2010, 9, 215-236.	46.4	2,886
15	Identification of Novel Substrates for Human Cytochrome P450 2J2. Drug Metabolism and Disposition, 2010, 38, 347-356.	3.3	120
16	Refining the In Vitro and In Vivo Critical Parameters for P-Glycoprotein, [I]/IC50 and [I2]/IC50, That Allow for the Exclusion of Drug Candidates from Clinical Digoxin Interaction Studies. Molecular Pharmaceutics, 2010, 7, 398-411.	4.6	55
17	P-glycoprotein related drug interactions: clinical importance and a consideration of disease states. Expert Opinion on Drug Metabolism and Toxicology, 2010, 6, 603-619.	3.3	64
18	Sequential Metabolism Is Responsible for Diltiazem-Induced Time-Dependent Loss of CYP3A. Drug Metabolism and Disposition, 2007, 35, 704-712.	3.3	37

#	Article	IF	CITATION
19	EVALUATION OF TIME-DEPENDENT INACTIVATION OF CYP3A IN CRYOPRESERVED HUMAN HEPATOCYTES. Drug Metabolism and Disposition, 2005, 33, 853-861.	3.3	80
20	Structure-Based Design, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus 3C Protease Inhibitors. 8. Pharmacological Optimization of Orally Bioavailable 2-Pyridone-Containing Peptidomimetics. Journal of Medicinal Chemistry, 2003, 46, 4572-4585.	6.4	105
21	Structure-Based Design, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus 3C Protease Inhibitors. 6. Structureâ 'Activity Studies of Orally Bioavailable, 2-Pyridone-Containing Peptidomimetics. Journal of Medicinal Chemistry, 2002, 45, 1607-1623.	6.4	137
22	Design and synthesis of irreversible depsipeptidyl human rhinovirus 3C protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2683-2686.	2.2	18
23	Structure-Based Design, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus 3C Protease Inhibitors. 4. Incorporation of P1 Lactam Moieties as l-Glutamine Replacements. Journal of Medicinal Chemistry, 1999, 42, 1213-1224.	6.4	175
24	Structure-Based Design, Synthesis, and Biological Evaluation of Irreversible Human Rhinovirus 3C Protease Inhibitors. 1. Michael Acceptor Structureâ ⁻ Activity Studies. Journal of Medicinal Chemistry, 1998, 41, 2806-2818.	6.4	104