
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1047110/publications.pdf Version: 2024-02-01

MARÃALALONSO

#	Article	IF	CITATIONS
1	Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharmaceutical Research, 1997, 14, 1431-1436.	3.5	648
2	Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharmaceutical Research, 1999, 16, 1576-1581.	3.5	514
3	Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 57, 123-131.	4.3	408
4	Highly cited research articles in Journal of Controlled Release: Commentaries and perspectives by authors. Journal of Controlled Release, 2014, 190, 29-74.	9.9	394
5	Chitosan Nanoparticles as New Ocular Drug Delivery Systems: in Vitro Stability, in Vivo Fate, and Cellular Toxicity. Pharmaceutical Research, 2004, 21, 803-810.	3.5	336
6	Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: the effect of mucus on particle adsorption and transport. Pharmaceutical Research, 2002, 19, 1185-1193.	3.5	330
7	Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Advanced Drug Delivery Reviews, 2010, 62, 100-117.	13.7	323
8	Chitosan-based drug nanocarriers: Where do we stand?. Journal of Controlled Release, 2012, 161, 496-504.	9.9	306
9	Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine, 1994, 12, 299-306.	3.8	283
10	The potential of chitosan in ocular drug delivery. Journal of Pharmacy and Pharmacology, 2010, 55, 1451-1463.	2.4	281
11	Development and Brain Delivery of Chitosanâ ° PEG Nanoparticles Functionalized with the Monoclonal Antibody OX26. Bioconjugate Chemistry, 2005, 16, 1503-1511.	3.6	279
12	Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. International Journal of Pharmaceutics, 2009, 382, 205-214.	5.2	264
13	Nanomedicines for overcoming biological barriers. Biomedicine and Pharmacotherapy, 2004, 58, 168-172.	5.6	263
14	Novel Hyaluronic Acid-Chitosan Nanoparticles for Ocular Gene Therapy. , 2008, 49, 2016.		256
15	Chitosan Nanoparticles as a Potential Drug Delivery System for the Ocular Surface: Toxicity, Uptake Mechanism and In Vivo Tolerance. , 2006, 47, 1416.		255
16	Comparative in vitro Evaluation of Several Colloidal Systems, Nanoparticles, Nanocapsules, and Nanoemulsions, as Ocular Drug Carriers. Journal of Pharmaceutical Sciences, 1996, 85, 530-536.	3.3	249
17	Nanoparticles for nasal vaccination. Advanced Drug Delivery Reviews, 2009, 61, 140-157.	13.7	247
18	Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials, 2007, 28, 1553-1564.	11.4	245

#	Article	IF	CITATIONS
19	Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Advanced Drug Delivery Reviews, 2016, 106, 223-241.	13.7	241
20	Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. Journal of Controlled Release, 2004, 98, 231-244.	9.9	218
21	The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. European Journal of Pharmaceutical Sciences, 2003, 20, 73-81.	4.0	215
22	Chitosan-Alginate Blended Nanoparticles as Carriers for the Transmucosal Delivery of Macromolecules. Biomacromolecules, 2009, 10, 1736-1743.	5.4	210
23	Determinants of release rate of tetanus vaccine from polyester microspheres. Pharmaceutical Research, 1993, 10, 945-953.	3.5	207
24	Lipid-based nanocarriers for oral peptide delivery. Advanced Drug Delivery Reviews, 2016, 106, 337-354.	13.7	204
25	Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. International Journal of Pharmaceutics, 2007, 340, 134-142.	5.2	203
26	Chitosan–hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. International Journal of Pharmaceutics, 2009, 381, 122-129.	5.2	195
27	Heparinâ€Engineered Mesoporous Iron Metalâ€Organic Framework Nanoparticles: Toward Stealth Drug Nanocarriers. Advanced Healthcare Materials, 2015, 4, 1246-1257.	7.6	187
28	Improved Ocular Bioavailability of Indomethacin by Novel Ocular Drug Carriers. Journal of Pharmacy and Pharmacology, 2011, 48, 1147-1152.	2.4	180
29	Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59, 491-500.	4.3	159
30	Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine, 2010, 28, 2607-2614.	3.8	157
31	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
32	Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharmaceutical Research, 1993, 10, 80-87.	3.5	146
33	Biodegradable micro- and nanoparticles as long-term delivery vehicles for interferon-alpha. European Journal of Pharmaceutical Sciences, 2003, 18, 221-229.	4.0	146
34	New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin. International Journal of Pharmaceutics, 2005, 296, 122-132.	5.2	142
35	A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptidesâ~†. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 26-32.	4.3	139
36	PLGA:Poloxamer and PLGA:Poloxamine Blend Nanoparticles:Â New Carriers for Gene Delivery. Biomacromolecules, 2005, 6, 271-278.	5.4	131

#	Article	IF	CITATIONS
37	New Generation of Hybrid Poly/Oligosaccharide Nanoparticles as Carriers for the Nasal Delivery of Macromolecules. Biomacromolecules, 2009, 10, 243-249.	5.4	129
38	Nanoparticles as carriers for nasal vaccine delivery. Expert Review of Vaccines, 2005, 4, 185-196.	4.4	120
39	Oral Delivery of Biologics for Precision Medicine. Advanced Materials, 2020, 32, e1901935.	21.0	120
40	Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. International Journal of Pharmaceutics, 2005, 298, 378-383.	5.2	118
41	A new drug nanocarrier consisting of chitosan and hydoxypropylcyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 63, 79-86.	4.3	113
42	Nose-to-brain peptide delivery – The potential of nanotechnology. Bioorganic and Medicinal Chemistry, 2018, 26, 2888-2905.	3.0	113
43	Development and characterization of CyA-loaded poly(lactic acid)–poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. European Journal of Pharmaceutics and Biopharmaceutics, 2001, 51, 111-118.	4.3	112
44	The performance of nanocarriers for transmucosal drug delivery. Expert Opinion on Drug Delivery, 2006, 3, 463-478.	5.0	110
45	Targeting tumor associated macrophages: The new challenge for nanomedicine. Seminars in Immunology, 2017, 34, 103-113.	5.6	110
46	Development of chitosan sponges for buccal administration of insulin. Carbohydrate Polymers, 2007, 68, 617-625.	10.2	109
47	Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A. Pharmaceutical Research, 1996, 13, 311-315.	3.5	102
48	Chitosan/cyclodextrin nanoparticles can efficiently transfect the airway epithelium in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 257-263.	4.3	102
49	Nanoengineering of vaccines using natural polysaccharides. Biotechnology Advances, 2015, 33, 1279-1293.	11.7	96
50	Development of biodegradable microspheres and nanospheres for the controlled release of cyclosporin A. International Journal of Pharmaceutics, 1993, 99, 263-273.	5.2	94
51	Pulsed Controlled-Release System for Potential Use in Vaccine Delivery. Journal of Pharmaceutical Sciences, 1996, 85, 547-552.	3.3	91
52	The potential of chitosan for the oral administration of peptides. Expert Opinion on Drug Delivery, 2005, 2, 843-854.	5.0	91
53	Novel Hyaluronanâ€Based Nanocarriers for Transmucosal Delivery of Macromolecules. Macromolecular Bioscience, 2008, 8, 441-450.	4.1	91
54	Chitosan nanoparticles for drug delivery to the eye. Expert Opinion on Drug Delivery, 2009, 6, 239-253.	5.0	91

4

#	Article	IF	CITATIONS
55	Highly Efficient System To Deliver Taxanes into Tumor Cells: Docetaxel-Loaded Chitosan Oligomer Colloidal Carriers. Biomacromolecules, 2008, 9, 2186-2193.	5.4	90
56	Modulating the immune system through nanotechnology. Seminars in Immunology, 2017, 34, 78-102.	5.6	90
57	Application of NMR Spectroscopy to the Characterization of PEG-Stabilized Lipid Nanoparticles. Langmuir, 2004, 20, 8839-8845.	3.5	87
58	Formation of New Glucomannanâ^'Chitosan Nanoparticles and Study of Their Ability To Associate and Deliver Proteins. Macromolecules, 2006, 39, 4152-4158.	4.8	86
59	Hyaluronic Acid/Chitosan-g-Poly(ethylene glycol) Nanoparticles for Gene Therapy: An Application for pDNA and siRNA Delivery. Pharmaceutical Research, 2010, 27, 2544-2555.	3.5	83
60	Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Advanced Drug Delivery Reviews, 2016, 106, 367-380.	13.7	83
61	Nanoparticles as protein and gene carriers to mucosal surfaces. Nanomedicine, 2008, 3, 845-857.	3.3	80
62	Intracellular Delivery of an Antibody Targeting Gasdermin-B Reduces HER2 Breast Cancer Aggressiveness. Clinical Cancer Research, 2019, 25, 4846-4858.	7.0	79
63	A novel system based on a poloxamer/PLGA blend as a tetanus toxoid delivery vehicle. Pharmaceutical Research, 1999, 16, 682-688.	3.5	77
64	Systemic heparin delivery by the pulmonary route using chitosan and glycol chitosan nanoparticles. International Journal of Pharmaceutics, 2013, 447, 115-123.	5.2	77
65	A comparative study of curcumin-loaded lipid-based nanocarriers in the treatment of inflammatory bowel disease. Colloids and Surfaces B: Biointerfaces, 2016, 143, 327-335.	5.0	76
66	Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB. Drug Delivery, 2010, 17, 596-604.	5.7	73
67	Design and characterization of a new drug nanocarrier made from solid–liquid lipid mixtures. Journal of Colloid and Interface Science, 2005, 285, 590-598.	9.4	72
68	Co-delivery of viral proteins and a TLR7 agonist from polysaccharide nanocapsules: A needle-free vaccination strategy. Journal of Controlled Release, 2013, 172, 773-781.	9.9	71
69	PEG-PGA enveloped octaarginine-peptide nanocomplexes: An oral peptide delivery strategy. Journal of Controlled Release, 2018, 276, 125-139.	9.9	70
70	New strategies for the microencapsulation of tetanus vaccine. Journal of Microencapsulation, 1998, 15, 299-318.	2.8	69
71	Chitosan-based nanocapsules: physical characterization, stability in biological media and capsaicin encapsulation. Colloid and Polymer Science, 2012, 290, 1423-1434.	2.1	66
72	Hyaluronan nanocapsules as a new vehicle for intracellular drug delivery. European Journal of Pharmaceutical Sciences, 2013, 49, 483-490.	4.0	62

#	Article	IF	CITATIONS
73	Polysaccharide Nanoparticles Can Efficiently Modulate the Immune Response against an HIV Peptide Antigen. ACS Nano, 2019, 13, 4947-4959.	14.6	61
74	Nose-to-brain delivery of enveloped RNA - cell permeating peptide nanocomplexes for the treatment of neurodegenerative diseases. Biomaterials, 2020, 230, 119657.	11.4	59
75	Ionically Crosslinked Chitosan Nanoparticles as Gene Delivery Systems: Effect of PEGylation Degree on <l>ln Vitro</l> and <l>ln Vivo</l> Gene Transfer. Journal of Biomedical Nanotechnology, 2009, 5, 162-171.	1.1	58
76	Unveiling the pitfalls of the protein corona of polymeric drug nanocarriers. Drug Delivery and Translational Research, 2020, 10, 730-750.	5.8	58
77	Ocular Tolerance to a Topical Formulation of Hyaluronic Acid and Chitosan-Based Nanoparticles. Cornea, 2010, 29, 550-558.	1.7	56
78	A new drug nanocarrier consisting of polyarginine and hyaluronic acid. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 54-57.	4.3	55
79	Polymer-based oral peptide nanomedicines. Therapeutic Delivery, 2012, 3, 657-668.	2.2	55
80	Novel Approaches to Controlled-Release Antigen Delivery. International Journal of Technology Assessment in Health Care, 1994, 10, 121-130.	0.5	54
81	Nanoparticles Based on PLGA:Poloxamer Blends for the Delivery of Proangiogenic Growth Factors. Molecular Pharmaceutics, 2010, 7, 1724-1733.	4.6	54
82	Polyaminoacid nanocapsules for drug delivery to the lymphatic system: Effect of the particle size. International Journal of Pharmaceutics, 2016, 509, 107-117.	5.2	52
83	Rational design of polyarginine nanocapsules intended to help peptides overcoming intestinal barriers. Journal of Controlled Release, 2017, 263, 4-17.	9.9	51
84	Oral delivery of peptides: opportunities and issues for translation. Advanced Drug Delivery Reviews, 2016, 106, 193-195.	13.7	50
85	PLA-PEG nanospheres: new carriers for transmucosal delivery of proteins and plasmid DNA. Polymers for Advanced Technologies, 2002, 13, 851-858.	3.2	49
86	A Polymer/Oil Based Nanovaccine as a Single-Dose Immunization Approach. PLoS ONE, 2013, 8, e62500.	2.5	49
87	Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives. Nanomedicine, 2016, 11, 2341-2357.	3.3	46
88	Development and characterization of microencapsulated microspheres. Pharmaceutical Research, 1994, 11, 1568-1574.	3.5	45
89	The interaction of protamine nanocapsules with the intestinal epithelium: A mechanistic approach. Journal of Controlled Release, 2016, 243, 109-120.	9.9	45
90	Self-assembled hyaluronan nanocapsules for the intracellular delivery of anticancer drugs. Scientific Reports, 2019, 9, 11565.	3.3	45

#	Article	IF	CITATIONS
91	Approaches to improve the association of amikacin sulphate to poly(alkylcyanoacrylate) nanoparticles. International Journal of Pharmaceutics, 1991, 68, 69-76.	5.2	44
92	Rational design of protamine nanocapsules as antigen delivery carriers. Journal of Controlled Release, 2017, 245, 62-69.	9.9	44
93	Protein-loaded PLGA–PEO blend nanoparticles: encapsulation, release and degradation characteristics. Colloid and Polymer Science, 2010, 288, 141-150.	2.1	43
94	Anti-tumor efficacy of chitosan-g-poly(ethylene glycol) nanocapsules containing docetaxel: Anti-TMEFF-2 functionalized nanocapsules vs. non-functionalized nanocapsules. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 330-337.	4.3	42
95	Investigation of a pMDI system containing chitosan microspheres and P134a. International Journal of Pharmaceutics, 1998, 174, 209-222.	5.2	41
96	Polyglutamic acid–PEG nanocapsules as long circulating carriers for the delivery of docetaxel. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 47-54.	4.3	39
97	Development of PLGA-Mannosamine Nanoparticles as Oral Protein Carriers. Biomacromolecules, 2013, 14, 4046-4052.	5.4	38
98	Polymeric Nanocapsules for Vaccine Delivery: Influence of the Polymeric Shell on the Interaction With the Immune System. Frontiers in Immunology, 2018, 9, 791.	4.8	36
99	Co-delivery of RNAi and chemokine by polyarginine nanocapsules enables the modulation of myeloid-derived suppressor cells. Journal of Controlled Release, 2019, 295, 60-73.	9.9	36
100	Extracellular matrix mechanics regulate transfection and SOX9-directed differentiation of mesenchymal stem cells. Acta Biomaterialia, 2020, 110, 153-163.	8.3	36
101	A new potential nano-oncological therapy based on polyamino acid nanocapsules. Journal of Controlled Release, 2013, 169, 10-16.	9.9	34
102	Docetaxel-loaded polyglutamic acid-PEG nanocapsules for the treatment of metastatic cancer. Journal of Controlled Release, 2016, 238, 263-271.	9.9	34
103	Polyarginine Nanocapsules as a Potential Oral Peptide Delivery Carrier. Journal of Pharmaceutical Sciences, 2017, 106, 611-618.	3.3	34
104	Nanotechnologies for the delivery of biologicals: Historical perspective and current landscape. Advanced Drug Delivery Reviews, 2021, 176, 113899.	13.7	33
105	Nanomedicine and cancer immunotherapy – targeting immunosuppressive cells. Journal of Drug Targeting, 2015, 23, 656-671.	4.4	32
106	Biodistribution and lymph node retention of polysaccharide-based immunostimulating nanocapsules. Vaccine, 2014, 32, 1685-1692.	3.8	31
107	Bilayer polymeric nanocapsules: A formulation approach for a thermostable and adjuvanted E. coli antigen vaccine. Journal of Controlled Release, 2018, 286, 20-32.	9.9	30
108	The size and composition of polymeric nanocapsules dictate their interaction with macrophages and biodistribution in zebrafish. Journal of Controlled Release, 2019, 308, 98-108.	9.9	30

#	Article	IF	CITATIONS
109	A multifunctional drug nanocarrier for efficient anticancer therapy. Journal of Controlled Release, 2019, 294, 154-164.	9.9	29
110	Assessment of the permeability and toxicity of polymeric nanocapsules using the zebrafish model. Nanomedicine, 2017, 12, 2069-2082.	3.3	28
111	Chapter 15 Mucosal Delivery of Liposome–Chitosan Nanoparticle Complexes. Methods in Enzymology, 2009, 465, 289-312.	1.0	27
112	PLGA:poloxamer blend micro- and nanoparticles as controlled release systems for synthetic proangiogenic factors. European Journal of Pharmaceutical Sciences, 2010, 41, 644-649.	4.0	26
113	Surface-modified PLGA-based nanoparticles that can efficiently associate and deliver virus-like particles. Nanomedicine, 2010, 5, 843-853.	3.3	26
114	Enhanced in vivo therapeutic efficacy of plitidepsin-loaded nanocapsules decorated with a new poly-aminoacid-PEG derivative. International Journal of Pharmaceutics, 2015, 483, 212-219.	5.2	26
115	Polymeric nanocapsules: a potential new therapy for corneal wound healing. Drug Delivery and Translational Research, 2016, 6, 708-721.	5.8	26
116	Advances on the formulation of proteins using nanotechnologies. Journal of Drug Delivery Science and Technology, 2017, 42, 155-180.	3.0	26
117	Protamine nanocapsules as carriers for oral peptide delivery. Journal of Controlled Release, 2018, 291, 157-168.	9.9	26
118	Coreâ^'Shell Dendriplexes with Sterically Induced Stoichiometry for Gene Delivery. Macromolecules, 2010, 43, 6953-6961.	4.8	25
119	Nanovaccines : nanocarriers for antigen delivery. Biologie Aujourd'hui, 2012, 206, 249-261.	0.1	25
120	Highly versatile immunostimulating nanocapsules for specific immune potentiation. Nanomedicine, 2014, 9, 2273-2289.	3.3	25
121	Reduction of Cardiovascular Side Effects Associated with Ocular Administration of Metipranolol by Inclusion in Polymeric Nanocapsules. Journal of Ocular Pharmacology and Therapeutics, 1992, 8, 191-198.	1.4	24
122	Translating chitosan to clinical delivery of nucleic acid-based drugs. MRS Bulletin, 2014, 39, 60-70.	3.5	24
123	Chitosan-Poly (I:C)-PADRE Based Nanoparticles as Delivery Vehicles for Synthetic Peptide Vaccines. Vaccines, 2015, 3, 730-750.	4.4	24
124	Recent advances in vaccine delivery. Pharmaceutical Patent Analyst, 2016, 5, 49-73.	1.1	24
125	An In Situ Hyaluronic Acid-Fibrin Hydrogel Containing Drug-Loaded Nanocapsules for Intra-Articular Treatment of Inflammatory Joint Diseases. Regenerative Engineering and Translational Medicine, 2020, 6, 201-216.	2.9	24
126	Controlled release of proteins from poly(L-lactic acid) coated polyisobutylcyanoacrylate microcapsules. Journal of Applied Polymer Science, 1994, 52, 1797-1807.	2.6	23

#	Article	IF	CITATIONS
127	Arginine-Based Poly(I:C)-Loaded Nanocomplexes for the Polarization of Macrophages Toward M1-Antitumoral Effectors. Frontiers in Immunology, 2020, 11, 1412.	4.8	23
128	Protamine Nanocapsules for the Development of Thermostable Adjuvanted Nanovaccines. Molecular Pharmaceutics, 2018, 15, 5653-5664.	4.6	22
129	Versatile protamine nanocapsules to restore miR-145 levels and interfere tumor growth in colorectal cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 449-459.	4.3	22
130	Engineering, onâ€demand manufacturing, and scalingâ€up of polymeric nanocapsules. Bioengineering and Translational Medicine, 2019, 4, 38-50.	7.1	22
131	Improved delivery of angiogenesis inhibitors from PLGA:poloxamer blend micro- and nanoparticles. Journal of Microencapsulation, 2010, 27, 57-66.	2.8	21
132	A Potential Nanomedicine Consisting of Heparin‣oaded Polysaccharide Nanocarriers for the Treatment of Asthma. Macromolecular Bioscience, 2012, 12, 176-183.	4.1	21
133	Physical Properties and Stability of Soft Gelled Chitosanâ€Based Nanoparticles. Macromolecular Bioscience, 2016, 16, 1873-1882.	4.1	21
134	Engineering polymeric nanocapsules for an efficient drainage and biodistribution in the lymphatic system. Journal of Drug Targeting, 2019, 27, 646-658.	4.4	21
135	A novel low molecular weight nanocomposite hydrogel formulation for intra-tumoural delivery of anti-cancer drugs. International Journal of Pharmaceutics, 2019, 565, 151-161.	5.2	20
136	Using nanotechnology to deliver biomolecules from nose to brain — peptides, proteins, monoclonal antibodies and RNA. Drug Delivery and Translational Research, 2022, 12, 862-880.	5.8	20
137	In vivo evaluation of poly-l-asparagine nanocapsules as carriers for anti-cancer drug delivery. International Journal of Pharmaceutics, 2013, 458, 83-89.	5.2	19
138	Design of Polymeric Nanocapsules for Intranasal Vaccination against Mycobacterium Tuberculosis: Influence of the Polymeric Shell and Antigen Positioning. Pharmaceutics, 2020, 12, 489.	4.5	19
139	Polyarginine nanocapsules: A versatile nanocarrier with potential in transmucosal drug delivery. International Journal of Pharmaceutics, 2017, 529, 474-485.	5.2	18
140	Natural and cross-inducible anti-SIV antibodies in Mauritian cynomolgus macaques. PLoS ONE, 2017, 12, e0186079.	2.5	18
141	Advanced nanomedicine characterization by DLS and AF4-UV-MALS: Application to a HIV nanovaccine. Journal of Pharmaceutical and Biomedical Analysis, 2020, 179, 113017.	2.8	18
142	Nanomedicine: New Challenges and Opportunities in Cancer Therapy. Journal of Biomedical Nanotechnology, 2008, 4, 276-292.	1.1	17
143	Synthetic nanocarriers for the delivery of polynucleotides to the eye. European Journal of Pharmaceutical Sciences, 2017, 103, 5-18.	4.0	17
144	Solvent-free protamine nanocapsules as carriers for mucosal delivery of therapeutics. European Polymer Journal, 2017, 93, 695-705.	5.4	17

#	Article	IF	CITATIONS
145	Biodistribution of radiolabeled polyglutamic acid and PEC-polyglutamic acid nanocapsules. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112, 155-163.	4.3	17
146	Engineering Anisotropic Meniscus: Zonal Functionality and Spatiotemporal Drug Delivery. Tissue Engineering - Part B: Reviews, 2021, 27, 133-154.	4.8	17
147	Intracellular delivery of docetaxel using freeze-dried polysaccharide nanocapsules. Journal of Microencapsulation, 2013, 30, 181-188.	2.8	16
148	mRNA-activated matrices encoding transcription factors as primers of cell differentiation in tissue engineering. Biomaterials, 2020, 247, 120016.	11.4	16
149	Carboxymethyl-β-glucan/chitosan nanoparticles: new thermostable and efficient carriers for antigen delivery. Drug Delivery and Translational Research, 2021, 11, 1689-1702.	5.8	16
150	Asymmetric flow field-flow fractionation as a multifunctional technique for the characterization of polymeric nanocarriers. Drug Delivery and Translational Research, 2021, 11, 373-395.	5.8	16
151	Microdialysis sampling to determine the pharmacokinetics of unbound SDZ ICM 567 in blood and brain in awake, freely-moving rats. Pharmaceutical Research, 1995, 12, 291-294.	3.5	15
152	A nanoemulsion/micelles mixed nanosystem for the oral administration of hydrophobically modified insulin. Drug Delivery and Translational Research, 2021, 11, 524-545.	5.8	15
153	Influence of the surface properties of nanocapsules on their interaction with intestinal barriers. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 203-213.	4.3	14
154	Sphingomyelin nanosystems loaded with uroguanylin and etoposide for treating metastatic colorectal cancer. Scientific Reports, 2021, 11, 17213.	3.3	14
155	Lymphatic Targeting of Nanosystems for Anticancer Drug Therapy. Current Pharmaceutical Design, 2016, 22, 1194-1209.	1.9	14
156	<i>In vivo</i> study of the tissue distribution and immunosuppressive response of cyclosporin a-loaded polyester micro- and nanospheres. Drug Delivery, 1995, 2, 21-28.	5.7	13
157	Selective interaction of PEGylated polyglutamic acid nanocapsules with cancer cells in a 3D model of a metastatic lymph node. Journal of Nanobiotechnology, 2016, 14, 51.	9.1	13
158	Polyaminoacid-based nanocarriers: a review of the latest candidates for oral drug delivery. Expert Opinion on Drug Delivery, 2020, 17, 1081-1092.	5.0	13
159	Technological challenges in the preclinical development of an HIV nanovaccine candidate. Drug Delivery and Translational Research, 2020, 10, 621-634.	5.8	13
160	Nanoâ€Oncologicals: A Tortoise Trail Reaching New Avenues. Advanced Functional Materials, 2021, 31, 2009860.	14.9	13
161	Design of polymeric nanocapsules to improve their lympho-targeting capacity. Nanomedicine, 2019, 14, 3013-3033.	3.3	12
162	Mucosal antibody responses to vaccines targeting SIV protease cleavage sites or full-length Gag and Env proteins in Mauritian cynomolgus macaques. PLoS ONE, 2018, 13, e0202997.	2.5	11

#	Article	IF	CITATIONS
163	Syzygium aromaticum (clove) and Thymus zygis (thyme) essential oils increase susceptibility to colistin in the nosocomial pathogens Acinetobacter baumannii and Klebsiella pneumoniae. Biomedicine and Pharmacotherapy, 2020, 130, 110606.	5.6	11
164	Mauritian cynomolgus macaques with M3M4 <scp>MHC</scp> genotype control <scp>SIV</scp> mac251 infection. Journal of Medical Primatology, 2017, 46, 137-143.	0.6	10
165	Nanoparticular Carriers for Ocular Drug Delivery. , 2006, , 649-673.		10
166	Tuning the PEG surface density of the PEG-PGA enveloped Octaarginine-peptide Nanocomplexes. Drug Delivery and Translational Research, 2020, 10, 241-258.	5.8	9
167	Enhancing cutaneous delivery with laser technology: Almost there, but not yet. Journal of Controlled Release, 2019, 315, 150-165.	9.9	8
168	Laser-induced transient skin disruption to enhance cutaneous drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 156, 165-175.	4.3	8
169	Vaccine targeting SIVmac251 protease cleavage sites protects macaques against vaginal infection. Journal of Clinical Investigation, 2020, 130, 6429-6442.	8.2	7
170	Development of a nanocapsule-loaded hydrogel for drug delivery for intraperitoneal administration. International Journal of Pharmaceutics, 2022, 622, 121828.	5.2	7
171	Polysaccharide-Based Nanocarriers for Drug Delivery. Frontiers in Nanobiomedical Research, 2014, , 235-277.	0.1	6
172	Chapter 1. Historical View of the Design and Development of Nanocarriers for Overcoming Biological Barriers. RSC Drug Discovery Series, 2012, , 3-36.	0.3	6
173	Nanotechnology Approaches for Cancer Immunotherapy and Immunomodulation. Advances in Delivery Science and Technology, 2014, , 215-242.	0.4	4
174	Quantification of the actual composition of polymeric nanocapsules: a quality control analysis. Drug Delivery and Translational Research, 2022, 12, 2865-2874.	5.8	4
175	Preparation of Poly(Lactic Acid) (PLA) and Poly(Ethylene Oxide) (PEO) Nanoparticles as Carriers for Gene Delivery. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5468.	0.3	3
176	In vitro relevant information for the assessment of nanoparticles for oral drug administration. , 2020, , 419-458.		3
177	Cervico-Vaginal Inflammatory Cytokine and Chemokine Responses to Two Different SIV Immunogens. Frontiers in Immunology, 2020, 11, 1935.	4.8	3
178	Improved delivery of angiogenesis inhibitors from PLGA:poloxamer blend micro- and nanoparticles. Journal of Microencapsulation, 0, , 090518025217063.	2.8	1
179	New Editor-in-Chief. Drug Delivery and Translational Research, 2019, 9, 737-737.	5.8	0
180	My one-year perspective as editor-in-chief of DDTR. Drug Delivery and Translational Research, 2020, 10, 565-566.	5.8	0

#	Article	IF	CITATIONS
181	Oral Drug Delivery: Oral Delivery of Biologics for Precision Medicine (Adv. Mater. 13/2020). Advanced Materials, 2020, 32, 2070099.	21.0	0
182	Editorial note. Drug Delivery and Translational Research, 2021, 11, 331-333.	5.8	0
183	Comment from the editor-in-chief about the Special Issue "A perspective of drug delivery and translational research in Europe†Drug Delivery and Translational Research, 2021, 11, 341-342.	5.8	0