Cedric-olivier Turrin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1047031/publications.pdf

Version: 2024-02-01

		101496	1	14418	
89	4,286	36		63	
papers	citations	h-index		g-index	
110	110	110		2401	
110	110	110		3401	
all docs	docs citations	times ranked		citing authors	
110 all docs	110 docs citations	110 times ranked		3401 citing authors	3

#	Article	IF	CITATIONS
1	Curing inflammatory diseases using phosphorous dendrimers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1783.	3.3	6
2	Dendritic metal complexes for bioimaging. Recent advances. Coordination Chemistry Reviews, 2021, 430, 213739.	9 . 5	18
3	AB5 Derivatives of Cyclotriphosphazene for the Synthesis of Dendrons and Their Applications. Molecules, 2021, 26, 4017.	1.7	11
4	Supramolecular and Macromolecular Matrix Nanocarriers for Drug Delivery in Inflammation-Associated Skin Diseases. Pharmaceutics, 2020, 12, 1224.	2.0	3
5	An Anti-Inflammatory Poly(PhosphorHydrazone) Dendrimer Capped with AzaBisPhosphonate Groups to Treat Psoriasis. Biomolecules, 2020, 10, 949.	1.8	12
6	Ferrocenyl Phosphorhydrazone Dendrimers Synthesis, and Electrochemical and Catalytic Properties. Molecules, 2020, 25, 447.	1.7	7
7	Preparation and cytotoxicity of lipid nanocarriers containing a hydrophobic flavanone. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 124982.	2.3	14
8	Biodistribution and Biosafety of a Poly(Phosphorhydrazone) Dendrimer, an Anti-Inflammatory Drug-Candidate. Biomolecules, 2019, 9, 475.	1.8	13
9	Three-Dimensional Directionality Is a Pivotal Structural Feature for the Bioactivity of Azabisphosphonate-Capped Poly(PhosphorHydrazone) Nanodrug Dendrimers. Biomacromolecules, 2018, 19, 712-720.	2.6	18
10	Solventless synthesis of Ru(0) composites stabilized with polyphosphorhydrazone (PPH) dendrons and their use in catalysis. RSC Advances, 2016, 6, 64557-64567.	1.7	15
11	Cyclotriphosphazene, an old compound applied to the synthesis of smart dendrimers with tailored properties. Pure and Applied Chemistry, 2016, 88, 919-929.	0.9	14
12	Poly(phosphorhydrazone) dendrimers: yin and yang of monocyte activation for human NK cell amplification applied to immunotherapy against multiple myeloma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2321-2330.	1.7	42
13	Influence of PPH dendrimers' surface functions on the activation of human monocytes: a study of their interactions with pure lipid model systems. Physical Chemistry Chemical Physics, 2016, 18, 21871-21880.	1.3	11
14	Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coordination Chemistry Reviews, 2016, 308, 478-497.	9.5	85
15	Influence of Structural Parameters on the Selfâ€Association Properties of Antiâ€HIV Catanionic Dendrimers. ChemPhysChem, 2015, 16, 3433-3437.	1.0	5
16	Theoretical and experimental characterization of aminoâ€PEGâ€phosphonateâ€terminated Polyphosphorhydrazone dendrimers: Influence of size and PEG capping on cytotoxicity profiles. Journal of Polymer Science Part A, 2015, 53, 761-774.	2.5	13
17	Use of a fluorescent aminodeoxylactitol to measure the stability of anti-HIV catanionic dendrimers by spectrofluorimetry. Tetrahedron Letters, 2015, 56, 1566-1569.	0.7	7
18	Synthesis and characterization of bifunctional dendrimers: preliminary use for the coating of gold surfaces and the proliferation of human osteoblasts (HOB). New Journal of Chemistry, 2015, 39, 7194-7205.	1.4	22

#	Article	IF	CITATIONS
19	The key role of the scaffold on the efficiency of dendrimer nanodrugs. Nature Communications, 2015, 6, 7722.	5.8	133
20	Thiophosphate/Phosphonateâ€Containing Crossâ€Linked PEGs and Their Use for the Stabilization of Silver Nanoparticles. Heteroatom Chemistry, 2015, 26, 299-306.	0.4	0
21	Phosphorus-Based Dendrimer ABP Treats Neuroinflammation by Promoting IL-10-Producing CD4 ⁺ T Cells. Biomacromolecules, 2015, 16, 3425-3433.	2.6	48
22	Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes. Nanoscale, 2015, 7, 17672-17684.	2.8	37
23	Deciphering Ligands' Interaction with Cu and Cu ₂ O Nanocrystal Surfaces by NMR Solution Tools. Chemistry - A European Journal, 2015, 21, 1169-1178.	1.7	32
24	The dendritic effect illustrated with phosphorus dendrimers. Chemical Society Reviews, 2015, 44, 3890-3899.	18.7	118
25	Repeated intravenous injections in non-human primates demonstrate preclinical safety of an anti-inflammatory phosphorus-based dendrimer. Nanotoxicology, 2015, 9, 433-441.	1.6	34
26	Modulation of pro-inflammatory activation of monocytes and dendritic cells by aza-bis-phosphonate dendrimer as an experimental therapeutic agent. Arthritis Research and Therapy, 2014, 16, R98.	1.6	24
27	Dendrimers for drug delivery. Journal of Materials Chemistry B, 2014, 2, 4055-4066.	2.9	215
28	Diversified Strategies for the Synthesis of Bifunctional Dendrimeric Structures. European Journal of Organic Chemistry, 2013, 2013, 5414-5422.	1.2	20
29	PPH dendrimers grafted on silica nanoparticles: surface chemistry, characterization, silver colloids hosting and antibacterial activity. RSC Advances, 2013, 3, 19015.	1.7	19
30	Mannodendrimers prevent acute lung inflammation by inhibiting neutrophil recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8795-8800.	3.3	112
31	An Azabisphosphonate-Capped Poly(phosphorhydrazone) Dendrimer for the Treatment of Endotoxin-Induced Uveitis. Molecules, 2013, 18, 9305-9316.	1.7	30
32	Biological properties of water-soluble phosphorhydrazone dendrimers. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 33-44.	1.2	10
33	Frequency and route of administration in the treatment of experimental arthritis by phosphorus-based dendrimer. Annals of the Rheumatic Diseases, 2012, 71, A8.2-A8.	0.5	6
34	Application of the Kabachnik-Fields and Moedritzer-Irani Procedures for the Preparation of Bis(phosphonomethyl)amino- and Bis[(dimethoxyphosphoryl)Â-methyl]amino-Terminated Poly(ethylene) Tj ETQ	q0 0.2) rgB	T/ © verlock 1
35	Ligand effects on the air stability of coppernanoparticles obtained from organometallic synthesis. Journal of Materials Chemistry, 2012, 22, 2279-2285.	6.7	73
36	Synthesis and characterization of water-soluble ferrocene-dendrimers. Journal of Organometallic Chemistry, 2012, 718, 22-30.	0.8	14

#	Article	IF	Citations
37	Low generation PEGylated phosphorus-containing dendrons with phosphonate anchors. Tetrahedron Letters, 2012, 53, 1908-1911.	0.7	6
38	Fluorescent Phosphorus Dendrimers and Their Role in Supramolecular Interactions. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 860-868.	0.8	2
39	A Phosphorus-Based Dendrimer Targets Inflammation and Osteoclastogenesis in Experimental Arthritis. Science Translational Medicine, 2011, 3, 81ra35.	5.8	207
40	Multivalent catanionic GalCer analogs derived from first generation dendrimeric phosphonic acids. Bioorganic and Medicinal Chemistry, 2010, 18, 242-248.	1.4	38
41	Phosphorus dendrimers as viewed by 31P NMR spectroscopy; synthesis and characterization. Comptes Rendus Chimie, 2010, 13, 1006-1027.	0.2	32
42	Designing dendrimers for ocular drug delivery. European Journal of Medicinal Chemistry, 2010, 45, 326-334.	2.6	149
43	R116: Immuno-modulations induites par des dendrimÃ"res phosphorés. Bulletin Du Cancer, 2010, 97, S60-S61.	0.6	0
44	Synthesis of a Fluorescent Cationic Phosphorus Dendrimer and Preliminary Biological Studies of Its Interaction with DNA. Nucleosides, Nucleotides and Nucleic Acids, 2010, 29, 155-167.	0.4	27
45	Biological properties of phosphorus dendrimers. New Journal of Chemistry, 2010, 34, 1512.	1.4	87
46	An efficient synthesis combining phosphorus dendrimers and 15-membered triolefinic azamacrocycles: towards the stabilization of platinum nanoparticles. New Journal of Chemistry, 2010, 34, 547.	1.4	20
47	Anti-inflammatory and immunosuppressive activation of human monocytes by a bioactive dendrimer. Journal of Leukocyte Biology, 2009, 85, 553-562.	1.5	89
48	<i>gem</i> â€Bisphosphonateâ€Ended Group Dendrimers: Design and Gadolinium Complexing Properties. European Journal of Organic Chemistry, 2009, 2009, 4290-4299.	1.2	12
49	Efficient synthesis of phosphorus-containing dendrimers capped with isosteric functions of amino-bismethylene phosphonic acids. Tetrahedron Letters, 2009, 50, 2078-2082.	0.7	34
50	Dendrimers ended by non-symmetrical azadiphosphonate groups: Synthesis and immunological properties. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3963-3966.	1.0	37
51	Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy. Journal of Translational Medicine, 2009, 7, 82.	1.8	68
52	Dendrimers and nanomedicine: multivalency in action. New Journal of Chemistry, 2009, 33, 1809.	1.4	176
53	Phosphonate terminated PPH dendrimers: influence of pendant alkyl chains on the in vitro anti-HIV-1 properties. Organic and Biomolecular Chemistry, 2009, 7, 3491.	1.5	40
54	Tailored Control and Optimisation of the Number of Phosphonic Acid Termini on Phosphorusâ€Containing Dendrimers for the Exâ€Vivo Activation of Human Monocytes. Chemistry - A European Journal, 2008, 14, 4836-4850.	1.7	102

#	Article	IF	CITATIONS
55	Dendrimers and DNA: Combinations of Two Special Topologies for Nanomaterials and Biology. Chemistry - A European Journal, 2008, 14, 7422-7432.	1.7	125
56	Optical Properties of Hybrid Dendritic–Mesoporous Titania Nanocomposite Films. Chemistry - A European Journal, 2008, 14, 7658-7669.	1.7	45
57	Synthesis and Properties of Dendrimers Possessing the Same Fluorophore(s) Located Either Peripherally or Off-Center. Journal of Organic Chemistry, 2007, 72, 8707-8715.	1.7	65
58	Multiplication of Human Natural Killer Cells by Nanosized Phosphonate-Capped Dendrimers. Angewandte Chemie - International Edition, 2007, 46, 2523-2526.	7.2	138
59	Inside Cover: Multiplication of Human Natural Killer Cells by Nanosized Phosphonate-Capped Dendrimers (Angew. Chem. Int. Ed. 14/2007). Angewandte Chemie - International Edition, 2007, 46, 2334-2334.	7.2	0
60	New phosphorus dendrimers with chiral ferrocenyl phosphine-thioether ligands on the periphery for asymmetric catalysis. Journal of Organometallic Chemistry, 2007, 692, 1064-1073.	0.8	69
61	Decorating step-by-step and independently the surface and the core of dendrons. Journal of Organometallic Chemistry, 2007, 692, 1928-1939.	0.8	18
62	Synthesis and Application of Phosphorus Dendrimer Immobilized Azabis(oxazolines). Organic Letters, 2007, 9, 2895-2898.	2.4	84
63	Phosphorus dendritic architectures: polyanionic and polycationic derivatives. Polymer International, 2006, 55, 1155-1160.	1.6	18
64	First Example of Dendrons as Topological Amplifiers. European Journal of Inorganic Chemistry, 2006, 2006, 2556-2560.	1.0	10
65	Synthetic Pathways Towards Phosphorus Dendrimers and Dendritic Architectures. Current Organic Chemistry, 2006, 10, 2333-2355.	0.9	17
66	Design of phosphorylated dendritic architectures to promote human monocyte activation. FASEB Journal, 2006, 20, 2339-2351.	0.2	132
67	Phosphorus Dendrimers: Nano-objects for Nanosciences. Macromolecular Symposia, 2005, 229, 1-7.	0.4	4
68	Dendritic Catanionic Assemblies: In vitro Anti-HIV Activity of Phosphorus-Containing Dendrimers Bearing Gall²1cer Analogues. ChemBioChem, 2005, 6, 2207-2213.	1.3	77
69	Organometallic Derivatives at the Core of Phosphorus-Containing Dendrimers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 2881-2887.	0.6	26
70	Synthesis and Core and Surface Reactivity of Phosphorus-Based Dendrons. European Journal of Inorganic Chemistry, 2004, 2004, 2459-2466.	1.0	13
71	Does Charge Carrier Dimensionality Increase in Mixed-Valence Salts of Tetrathiafulvalene-Terminated Dendrimers?. Organic Letters, 2004, 6, 2109-2112.	2.4	22
72	Use of Functional Dendritic Macromolecules for the Design of Metal Oxo Based Hybrid Materials. Journal of Sol-Gel Science and Technology, 2003, 26, 629-633.	1.1	26

#	Article	IF	Citations
73	Surface, Core, and Structure Modifications of Phosphorus-Containing Dendrimers. Influence on the Thermal Stability ChemInform, 2003, 34, no.	0.1	0
74	Phosphorus dendrimers: from synthesis to applications. Comptes Rendus Chimie, 2003, 6, 791-801.	0.2	26
75	Surface, core, and structure modifications of phosphorus-containing dendrimers. Influence on the thermal stability. Tetrahedron, 2003, 59, 3965-3973.	1.0	45
76	Fluorinated dendrimers. Current Opinion in Colloid and Interface Science, 2003, 8, 282-295.	3.4	57
77	Phosphorus-Containing Dendrimers: Towards Applications. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1481-1484.	0.8	2
78	Behavior of an Optically Active Ferrocene Chiral Shell Located within Phosphorus-Containing Dendrimers. Organometallics, 2002, 21, 1891-1897.	1.1	57
79	Phosphorus-containing dendrimers bearing galactosylceramide analogs: Self-assembly propertiesElectronic supplementary information (ESI) available: experimental. See http://www.rsc.org/suppdata/cc/b2/b204287h/. Chemical Communications, 2002, , 1864-1865.	2.2	48
80	New phosphorus-containing dendrimers with ferrocenyl units in each layer. Comptes Rendus Chimie, 2002, 5, 309-318.	0.2	20
81	New chiral phosphorus-containing dendrimers with ferrocenes on the periphery. Tetrahedron, 2001, 57, 2521-2536.	1.0	62
82	Naked Au ₅₅ Clusters: Dramatic Effect of a Thiol-Terminated Dendrimer. Chemistry - A European Journal, 2000, 6, 1693-1697.	1.7	27
83	New Mesotextured Hybrid Materials Made from Assemblies of Dendrimers and Titanium(IV)-Oxo-Organo Clusters. Angewandte Chemie - International Edition, 2000, 39, 4249-4254.	7.2	110
84	MALDI TOF Mass Spectrometry for the Characterization of Phosphorus-Containing Dendrimers. Scope and Limitations. Analytical Chemistry, 2000, 72, 5097-5105.	3.2	92
85	Phosphorus-Containing Dendrimers with Ferrocenyl Units at the Core, within the Branches, and on the Periphery. Macromolecules, 2000, 33, 7328-7336.	2.2	74
86	Organicâ^'Inorganic Hybrid Materials Incorporating Phosphorus-Containing Dendrimers. Chemistry of Materials, 2000, 12, 3848-3856.	3.2	54
87	Naked Au55 Clusters: Dramatic Effect of a Thiol-Terminated Dendrimer. Chemistry - A European Journal, 2000, 6, 1693-1697.	1.7	75
88	CHEMISTRY WITHIN THE CASCADE STRUCTURE OF DENDRIMERS INCORPORATING P=N BONDS. Phosphorus Research Bulletin, 1999, 10, 777-781.	0.1	2
89	Chemistry within Megamolecules:Â Regiospecific Functionalization after Construction of Phosphorus Dendrimers. Journal of the American Chemical Society, 1998, 120, 13070-13082.	6.6	78