Alexander Steinkasserer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1046964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymorphism in human IL-1 receptor antagonist gene intron 2 is caused by variable numbers of an 86-bp tandem repeat. Human Genetics, 1993, 91, 403-4.	3.8	603
2	Hypoxia and Hypoxia-Inducible Factor-1α Modulate Lipopolysaccharide-Induced Dendritic Cell Activation and Function. Journal of Immunology, 2008, 180, 4697-4705.	0.8	363
3	DC-SIGN and DC-SIGNR Interact with the Glycoprotein of Marburg Virus and the S Protein of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2004, 78, 12090-12095.	3.4	357
4	Mature Dendritic Cells Infected with Herpes Simplex Virus Type 1 Exhibit Inhibited T-Cell Stimulatory Capacity. Journal of Virology, 2000, 74, 7127-7136.	3.4	266
5	DC-SIGN and CLEC-2 Mediate Human Immunodeficiency Virus Type 1 Capture by Platelets. Journal of Virology, 2006, 80, 8951-8960.	3.4	234
6	The Extracellular Domain of CD83 Inhibits Dendritic Cell–mediated T Cell Stimulation and Binds to a Ligand on Dendritic Cells. Journal of Experimental Medicine, 2001, 194, 1813-1821.	8.5	168
7	The human IL-1 receptor antagonist gene (IL1RN) maps to chromosome 2q14–q21, in the region of the IL-1α and IL-1β loci. Genomics, 1992, 13, 654-657.	2.9	154
8	Human monocyte derived dendritic cells express functional P2X and P2Y receptors as well as ecto-nucleotidases. FEBS Letters, 1999, 458, 424-428.	2.8	139
9	Prevention and Treatment of Experimental Autoimmune Encephalomyelitis by Soluble CD83. Journal of Experimental Medicine, 2004, 200, 345-351.	8.5	133
10	HMG-CoA reductase inhibitors suppress maturation of human dendritic cells: new implications for atherosclerosis. Atherosclerosis, 2004, 172, 85-93.	0.8	132
11	Inhibition of Cd83 Cell Surface Expression during Dendritic Cell Maturation by Interference with Nuclear Export of Cd83 mRNA. Journal of Experimental Medicine, 2000, 191, 1581-1590.	8.5	128
12	CD83: an update on functions and prospects of the maturation marker of dendritic cells. Archives of Dermatological Research, 2007, 299, 59-69.	1.9	127
13	Podocytes Are Nonhematopoietic Professional Antigen-Presenting Cells. Journal of the American Society of Nephrology: JASN, 2013, 24, 906-916.	6.1	110
14	CD83 Knockdown in Monocyte-Derived Dendritic Cells by Small Interfering RNA Leads to a Diminished T Cell Stimulation. Journal of Immunology, 2007, 178, 5454-5464.	0.8	109
15	Differential effects of statins on relevant functions of human monocyte-derived dendritic cells. Journal of Leukocyte Biology, 2006, 79, 529-538.	3.3	107
16	Signaling Lymphocytic Activation Molecule Is Expressed on Mature CD83+ Dendritic Cells and Is Up-Regulated by IL-1β. Journal of Immunology, 2001, 167, 1989-1995.	0.8	94
17	Role of CD83 in the Immunomodulation of Dendritic Cells. International Archives of Allergy and Immunology, 2002, 129, 113-118.	2.1	92
18	The CD83 Molecule – An Important Immune Checkpoint. Frontiers in Immunology, 2020, 11, 721.	4.8	86

#	Article	IF	CITATIONS
19	Infection of mature dendritic cells with herpes simplex virus type 1 dramatically reduces lymphoid chemokine-mediated migration. Journal of General Virology, 2005, 86, 1645-1657.	2.9	82
20	12/15-lipoxygenase–mediated enzymatic lipid oxidation regulates DC maturation and function. Journal of Clinical Investigation, 2015, 125, 1944-1954.	8.2	77
21	Cloning, recombinant expression and biochemical characterization of the murine CD83 molecule which is specifically upregulated during dendritic cell maturation. FEBS Letters, 1999, 461, 211-216.	2.8	76
22	Herpes Simplex Virus Type 1 Induces CD83 Degradation in Mature Dendritic Cells with Immediate-Early Kinetics via the Cellular Proteasome. Journal of Virology, 2007, 81, 6326-6338.	3.4	73
23	Thymic CD4 T cell selection requires attenuation of March8-mediated MHCII turnover in cortical epithelial cells through CD83. Journal of Experimental Medicine, 2016, 213, 1685-1694.	8.5	72
24	Mild hyperthermia enhances human monocyte-derived dendritic cell functions and offers potential for applications in vaccination strategies. International Journal of Hyperthermia, 2011, 27, 591-603.	2.5	67
25	CD83 Modulates B Cell Activation and Germinal Center Responses. Journal of Immunology, 2016, 196, 3581-3594.	0.8	67
26	The soluble form of CD83 is present at elevated levels in a number of hematological malignancies. Leukemia Research, 2004, 28, 237-241.	0.8	66
27	CD83 Expression in CD4+ T Cells Modulates Inflammation and Autoimmunity. Journal of Immunology, 2008, 180, 5890-5897.	0.8	66
28	Immunosuppression Involving Soluble CD83 Induces Tolerogenic Dendritic Cells That Prevent Cardiac Allograft Rejection. Transplantation, 2010, 90, 1145-1156.	1.0	61
29	Topical Application of Soluble CD83 Induces IDO-Mediated Immune Modulation, Increases Foxp3+ T Cells, and Prolongs Allogeneic Corneal Graft Survival. Journal of Immunology, 2013, 191, 1965-1975.	0.8	60
30	The bicyclams, a new class of potent human immunodeficiency virus inhibitors, block viral entry after binding. Antiviral Research, 1996, 29, 209-219.	4.1	59
31	Modulation of antibody-mediated glomerular injury in vivo by IL-1ra, soluble IL-1 receptor, and soluble TNF receptor. Kidney International, 1995, 48, 1738-1746.	5.2	58
32	Cu, Zn doped borate bioactive glasses: antibacterial efficacy and dose-dependent <i>in vitro</i> modulation of murine dendritic cells. Biomaterials Science, 2020, 8, 2143-2155.	5.4	56
33	Dendritic Cell Differentiation State and Their Interaction with NKT Cells Determine Th1/Th2 Differentiation in the Murine Model of <i>Leishmania major</i> Infection. Journal of Immunology, 2008, 180, 4371-4381.	0.8	53
34	Soluble CD83 Inhibits T Cell Activation by Binding to the TLR4/MD-2 Complex on CD14+ Monocytes. Journal of Immunology, 2017, 198, 2286-2301.	0.8	53
35	Latent Membrane Protein 1 of Epstein-Barr Virus Induces CD83 by the NF-κB Signaling Pathway. Journal of Virology, 2003, 77, 8290-8298.	3.4	49
36	Small interfering RNA (siRNA) delivery into monocyte-derived dendritic cells by electroporation. Journal of Immunological Methods, 2006, 311, 139-152.	1.4	48

#	Article	IF	CITATIONS
37	Leukoreduction system chambers are an efficient, valid, and economic source of functional monocyte-derived dendritic cells and lymphocytes. Immunobiology, 2013, 218, 1392-1401.	1.9	45
38	Differential expression of macrophage inflammatory protein-2 and monocyte chemoattractant protein-1 in experimental glomerulonephritis. Kidney International, 1996, 49, 715-721.	5.2	44
39	The soluble form of CD83 dramatically changes the cytoskeleton of dendritic cells. Immunobiology, 2004, 209, 129-140.	1.9	43
40	CD83 expression is essential for Treg cell differentiation and stability. JCI Insight, 2018, 3, .	5.0	42
41	L Particles Transmit Viral Proteins from Herpes Simplex Virus 1-Infected Mature Dendritic Cells to Uninfected Bystander Cells, Inducing CD83 Downmodulation. Journal of Virology, 2015, 89, 11046-11055.	3.4	41
42	Experimental study on the possibility of treatment of some hemorrhagic fevers. Journal of Biotechnology, 2000, 83, 67-76.	3.8	39
43	Overexpression, Purification, and Biochemical Characterization of the Extracellular Human CD83 Domain and Generation of Monoclonal Antibodies. Protein Expression and Purification, 2002, 24, 445-452.	1.3	39
44	Human ?2-glycoprotein I: molecular analysis of DNA and amino acid polymorphism. Human Genetics, 1993, 91, 401-2.	3.8	38
45	Cloning and Characterization of the Promoter Region of the Human CD83 Gene. Immunobiology, 2002, 205, 231-246.	1.9	38
46	CD83 is a dimer: Comparative analysis of monomeric and dimeric isoforms. Biochemical and Biophysical Research Communications, 2005, 329, 132-139.	2.1	37
47	Infection of dendritic cells with herpes simplex virus type 1 induces rapid degradation of CYTIP, thereby modulating adhesion and migration. Blood, 2011, 118, 107-115.	1.4	36
48	Autophagic degradation of lamins facilitates the nuclear egress of herpes simplex virus type 1. Journal of Cell Biology, 2019, 218, 508-523.	5.2	36
49	Efficient Expression of the Tumor-Associated Antigen MAGE-3 in Human Dendritic Cells, Using an Avian Influenza Virus Vector. Human Gene Therapy, 2000, 11, 2207-2218.	2.7	34
50	Generation of Human Dendritic Cells That Simultaneously Secrete IL-12 and Have Migratory Capacity by Adenoviral Gene Transfer of hCD40L in Combination With IFN-Î ³ . Journal of Immunotherapy, 2009, 32, 524-538.	2.4	33
51	Use of the acute phase serum amyloid A2 (SAA2) gene promoter in the analysis of pro- and anti-inflammatory mediators: differential kinetics of SAA2 promoter induction by IL-1β and TNF-α compared to IL-6. Journal of Immunological Methods, 1997, 203, 123-130.	1.4	32
52	Cutting Edge: Resistance to Apoptosis and Continuous Proliferation of Dendritic Cells Deficient for TNF Receptor-1. Journal of Immunology, 2000, 165, 4792-4796.	0.8	31
53	Herpes simplex virus type 1 ICPO induces CD83 degradation in mature dendritic cells independent of its E3 ubiquitin ligase function. Journal of General Virology, 2014, 95, 1366-1375.	2.9	31
54	Interleukin-10 Influences the Expression of MRP8 and MRP14 in Human Dendritic Cells. International Archives of Allergy and Immunology, 2003, 132, 40-47.	2.1	29

#	Article	IF	CITATIONS
55	Herpes simplex virus type I (HSV-1) replicates in mature dendritic cells but can only be transferred in a cell–cell contact-dependent manner. Journal of Leukocyte Biology, 2011, 89, 973-979.	3.3	29
56	Small interfering RNA (siRNA) delivery into murine bone marrow-derived dendritic cells by electroporation. Journal of Immunological Methods, 2008, 337, 71-77.	1.4	28
57	Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology, 2015, 220, 270-279.	1.9	28
58	Soluble human CD83 ameliorates lupus in NZB/W F1 mice. Immunobiology, 2013, 218, 1411-1415.	1.9	26
59	Human Interleukin-1 receptor antagonist High yield expression in E. coli and examination of cysteine residues. FEBS Letters, 1992, 310, 63-65.	2.8	25
60	Multiple Interferon Regulatory Factor and NF-κB Sites Cooperate in Mediating Cell-Type- and Maturation-Specific Activation of the Human <i>CD83</i> Promoter in Dendritic Cells. Molecular and Cellular Biology, 2013, 33, 1331-1344.	2.3	25
61	Soluble CD83 Triggers Resolution of Arthritis and Sustained Inflammation Control in IDO Dependent Manner. Frontiers in Immunology, 2019, 10, 633.	4.8	25
62	Herpes Simplex Virus Type 1 Propagation, Titration and Single-step Growth Curves. Bio-protocol, 2019, 9, e3441.	0.4	25
63	CD83 orchestrates immunity toward self and non-self in dendritic cells. JCI Insight, 2019, 4, .	5.0	24
64	Quercetin induces an immunoregulatory phenotype in maturing human dendritic cells. Immunobiology, 2020, 225, 151929.	1.9	23
65	Soluble CD14 and CD83 from Human Neonatal Antigen-Presenting Cells Are Inducible by Commensal Bacteria and Suppress Allergen-Induced Human Neonatal Th2 Differentiation. Infection and Immunity, 2007, 75, 4097-4104.	2.2	21
66	Transferrin Trojan Horses as a Rational Approach for the Biological Delivery of Therapeutic Peptide Domains. Journal of Biological Chemistry, 1999, 274, 24066-24073.	3.4	20
67	Differences in phenotype and function between spontaneously occurring melan-A-, tyrosinase- and influenza matrix peptide-specific CTL in HLA-A*0201 melanoma patients. International Journal of Cancer, 2005, 115, 450-455.	5.1	20
68	Cyclophilin A, the Major Intracellular Receptor for the Immunosuppressant Cyclosporin A, Maps to Chromosome 7p11.2-p13: Four Pseudogenes Map to Chromosomes 3, 10, 14, and 18. Genomics, 1995, 28, 101-104.	2.9	18
69	The cyclin-dependent kinase inhibitors p27Kip1 and p21Cip1 are not essential in T cell anergy. European Journal of Immunology, 2003, 33, 3154-3163.	2.9	18
70	Inhibition of the proteasome influences murine and human dendritic cell development in vitro and in vivo. Immunobiology, 2009, 214, 843-851.	1.9	18
71	Impairment of podocyte function by diphtheria toxin—a new reversible proteinuria model in mice. Laboratory Investigation, 2012, 92, 1674-1685.	3.7	18
72	CD83 and GRASP55 interact in human dendritic cells. Biochemical and Biophysical Research Communications, 2015, 459, 42-48.	2.1	18

#	Article	IF	CITATIONS
73	CNI-1493 mediated suppression of dendritic cell activation in vitro and in vivo. Immunobiology, 2004, 209, 89-97.	1.9	16
74	Role of Nuclear Factor (Erythroid-Derived 2)-Like 2 Signaling for Effects of Fumaric Acid Esters on Dendritic Cells. Frontiers in Immunology, 2017, 8, 1922.	4.8	15
75	Herpes Simplex Virus Type-2 Paralyzes the Function of Monocyte-Derived Dendritic Cells. Viruses, 2020, 12, 112.	3.3	15
76	Modulation of murine bone marrow-derived dendritic cells and B-cells by MCS-18 a natural product isolated from Helleborus purpurascens. Immunobiology, 2008, 213, 871-878.	1.9	14
77	Human Cytomegalovirus-Induced Degradation of CYTIP Modulates Dendritic Cell Adhesion and Migration. Frontiers in Immunology, 2017, 8, 461.	4.8	14
78	Molecular characterization of a cDNA encoding functional human deoxyhypusine synthase and chromosomal mapping of the corresponding gene locus. FEBS Letters, 1996, 378, 195-198.	2.8	13
79	Determination of the inhibitory activity and biological half-live of soluble CD83: Comparison of wild type and mutant isoforms. Immunobiology, 2006, 211, 449-453.	1.9	13
80	Crystal Structure of the Extracellular Domain of the Human Dendritic Cell Surface Marker CD83. Journal of Molecular Biology, 2017, 429, 1227-1243.	4.2	11
81	What Goes Around, Comes Around – HSV-1 Replication in Monocyte-Derived Dendritic Cells. Frontiers in Microbiology, 2017, 8, 2149.	3.5	10
82	Endogenous Expression of the Human CD83 Attenuates EAE Symptoms in Humanized Transgenic Mice and Increases the Activity of Regulatory T Cells. Frontiers in Immunology, 2019, 10, 1442.	4.8	10
83	Pre-incubation of corneal donor tissue with sCD83 improves graft survival via the induction of alternatively activated macrophages and tolerogenic dendritic cells. American Journal of Transplantation, 2022, 22, 438-454.	4.7	10
84	Tilting the Balance: Therapeutic Prospects of CD83 as a Checkpoint Molecule Controlling Resolution of Inflammation. International Journal of Molecular Sciences, 2022, 23, 732.	4.1	10
85	Eukaryotic expression of functionally active recombinant soluble CD83 from HEK 293T cells. Immunobiology, 2010, 215, 849-854.	1.9	9
86	siRNA Electroporation to Modulate Autophagy in Herpes Simplex Virus Type 1-Infected Monocyte-Derived Dendritic Cells. Journal of Visualized Experiments, 2019, , .	0.3	9
87	Mass Spectrometric Characterization of HSV-1 L-Particles From Human Dendritic Cells and BHK21 Cells and Analysis of Their Functional Role. Frontiers in Microbiology, 2020, 11, 1997.	3.5	9
88	Siglec-15 on Osteoclasts Is Crucial for Bone Erosion in Serum-Transfer Arthritis. Journal of Immunology, 2020, 205, 2595-2605.	0.8	7
89	HSV-1 Modulates IL-6 Receptor Expression on Human Dendritic Cells. Frontiers in Immunology, 2020, 11, 1970.	4.8	4
90	Transcriptional Targeting of Mature Dendritic Cells with Adenoviral Vectors via a Modular Promoter System for Antigen Expression and Functional Manipulation. Journal of Immunology Research, 2016, 2016, 1-17.	2.2	2

#	Article	IF	CITATIONS
91	How Human Herpesviruses Subvert Dendritic Cell Biology and Function. , 0, , .		0
92	A Tribute to Robert (Bob) Sim—Personal Memories of Working in Bob's Lab. Viruses, 2021, 13, 1696.	3.3	0