List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/104694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species. Bioorganic and Medicinal Chemistry, 2010, 18, 2225-2231.	3.0	109
2	MIND-BEST: Web Server for Drugs and Target Discovery; Design, Synthesis, and Assay of MAO-B Inhibitors and Theoreticalâ^'Experimental Study of G3PDH Protein from <i>Trichomonas gallinae</i> . Journal of Proteome Research, 2011, 10, 1698-1718.	3.7	75
3	Discovery of 3,4-Dihydropyrimidin-2(1 <i>H</i>)-ones As a Novel Class of Potent and Selective A _{2B} Adenosine Receptor Antagonists. ACS Medicinal Chemistry Letters, 2013, 4, 1031-1036.	2.8	65
4	Synthesis and QSAR study of the anticancer activity of some novel indane carbocyclic nucleosides. Bioorganic and Medicinal Chemistry, 2003, 11, 4999-5006.	3.0	60
5	Using entropy of drug and protein graphs to predict FDA drug-target network: Theoretic-experimental study of MAO inhibitors and hemoglobin peptides from Fasciola hepatica. European Journal of Medicinal Chemistry, 2011, 46, 1074-1094.	5.5	59
6	Brain-inspired cheminformatics of drug-target brain interactome, synthesis, and assay of TVP1022 derivatives. Neuropharmacology, 2016, 103, 270-278.	4.1	59
7	Pyrimidine Derivatives as Potent and Selective A ₃ Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2011, 54, 457-471.	6.4	56
8	ANN multiplexing model of drugs effect on macrophages; theoretical and flow cytometry study on the cytotoxicity of the anti-microbial drug G1 in spleen. Bioorganic and Medicinal Chemistry, 2012, 20, 6181-6194.	3.0	55
9	Discovery of Potent and Highly Selective A _{2B} Adenosine Receptor Antagonist Chemotypes. Journal of Medicinal Chemistry, 2016, 59, 1967-1983.	6.4	55
10	Studies on olefin epoxidation with t-BuOOH catalysed by dioxomolybdenum(VI) complexes of a novel chiral pyridyl alcoholate ligand. New Journal of Chemistry, 2001, 25, 959-963.	2.8	54
11	2D MI-DRAGON: A new predictor for protein–ligands interactions and theoretic-experimental studies of US FDA drug-target network, oxoisoaporphine inhibitors for MAO-A and human parasite proteins. European Journal of Medicinal Chemistry, 2011, 46, 5838-5851.	5.5	52
12	Model for High-Throughput Screening of Multitarget Drugs in Chemical Neurosciences: Synthesis, Assay, and Theoretic Study of Rasagiline Carbamates. ACS Chemical Neuroscience, 2013, 4, 1393-1403.	3.5	50
13	TOPS-MODE model of multiplexing neuroprotective effects of drugs and experimental-theoretic study of new 1,3-rasagiline derivatives potentially useful in neurodegenerative diseases. Bioorganic and Medicinal Chemistry, 2013, 21, 1870-1879.	3.0	48
14	NL MIND-BEST: A web server for ligands and proteins discovery—Theoretic-experimental study of proteins of Giardia lamblia and new compounds active against Plasmodium falciparum. Journal of Theoretical Biology, 2011, 276, 229-249.	1.7	43
15	Model for high-throughput screening of drug immunotoxicity – Study of the anti-microbial G1 over peritoneal macrophages using flow cytometry. European Journal of Medicinal Chemistry, 2014, 72, 206-220.	5.5	41
16	Probing the Anticancer Activity of Nucleoside Analogues:Â A QSAR Model Approach Using an Internally Consistent Training Set. Journal of Medicinal Chemistry, 2007, 50, 1537-1545.	6.4	38
17	Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New <scp>I</scp> -ProlyI- <scp>I</scp> -leucyI-glycinamide Peptidomimetics. ACS Chemical Neuroscience, 2018, 9, 2572-2587.	3.5	38
18	Entropy multi-target QSAR model for prediction of antiviral drug complex networks. Chemometrics and Intelligent Laboratory Systems, 2011, 107, 227-233.	3.5	32

#	Article	IF	CITATIONS
19	Entropy Model for Multiplex Drug-Target Interaction Endpoints of Drug Immunotoxicity. Current Topics in Medicinal Chemistry, 2013, 13, 1636-1649.	2.1	32
20	Enantiospecific Recognition at the A _{2B} Adenosine Receptor by Alkyl 2-Cyanoimino-4-substituted-6-methyl-1,2,3,4-tetrahydropyrimidine-5-carboxylates. Journal of Medicinal Chemistry, 2017, 60, 3372-3382.	6.4	26
21	A Short, Efficient Synthesis of Substituted Uracil: An Indane Carbocyclic Nucleoside. Synthesis, 2001, 2001, 0239-0242.	2.3	25
22	Experimental and DFT study of the aza-Diels–Alder reaction between cyclopentadiene and protonated benzylimine derivated from glyoxylates. Tetrahedron, 2005, 61, 10951-10957.	1.9	25
23	Prediction of Multi-Target Networks of Neuroprotective Compounds with Entropy Indices and Synthesis, Assay, and Theoretical Study of New Asymmetric 1,2-Rasagiline Carbamates. International Journal of Molecular Sciences, 2014, 15, 17035-17064.	4.1	25
24	The use of (â^)-8-phenylisoneomenthol and (â^)-8-phenylmenthol in the enantioselective synthesis of 3-functionalized 2-azabicyclo[2.2.1]heptane derivatives via aza-Diels–Alder reaction. Tetrahedron, 2006, 62, 9475-9482.	1.9	24
25	Xâ€Ray Crystallography and Free Energy Calculations Reveal the Binding Mechanism of A _{2A} Adenosine Receptor Antagonists. Angewandte Chemie - International Edition, 2020, 59, 16536-16543.	13.8	23
26	Enantioselective synthesis of 3-functionalized 2-azabicyclo[2.2.1]hept-5-enes by hetero Diels-Alder addition to cyclopentadiene. Tetrahedron Letters, 1998, 39, 5663-5666.	1.4	22
27	Ugi-Based Approaches to Quinoxaline Libraries. ACS Combinatorial Science, 2014, 16, 403-411.	3.8	22
28	Synthesis and Antiviral and Antineoplastic Activities of Some Novel Carbocyclic Guanosine Analogues with a Cyclobutane Ring Chemical and Pharmaceutical Bulletin, 1999, 47, 1314-1317.	1.3	20
29	Acid-catalyzed aza-Diels–Alder versus 1,3-dipolar cycloadditions of methyl glyoxylate oxime with cyclopentadiene. Tetrahedron Letters, 2008, 49, 5777-5781.	1.4	20
30	Nitrogen-Walk Approach to Explore Bioisosteric Replacements in a Series of Potent A _{2B} Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2020, 63, 7721-7739.	6.4	20
31	Pyridazine Derivatives, VI. Synthesis and Hypotensive Activity of 3-Hydrazinethieno(2,3-h)Cinnoline and its Derivatives. Archiv Der Pharmazie, 1988, 321, 735-738.	4.1	19
32	A short, efficient synthesis of the chiral auxiliary (+)-8-phenylneomenthol. Tetrahedron Letters, 2000, 41, 4123-4125.	1.4	19
33	Synthesis and Cytostatic Activities of New 6-Substituted Purinylcarbonucleosides Derived from Indan. Synthesis, 2002, 2002, 1084-1090.	2.3	19
34	3,4-Dihydropyrimidin-2(1 <i>H</i>)-ones as Antagonists of the Human A _{2B} Adenosine Receptor: Optimization, Structure–Activity Relationship Studies, and Enantiospecific Recognition. Journal of Medicinal Chemistry, 2021, 64, 458-480.	6.4	19
35	Synthesis and allosteric modulation of the dopamine receptor by peptide analogs of I-prolyI-I-leucyI-glycinamide (PLG) modified in the I-proline or I-proline and I-leucine scaffolds. European Journal of Medicinal Chemistry, 2013, 69, 146-158.	5.5	18
36	Multi-Target Mining of Alzheimer Disease Proteome with Hansch's QSBR-Perturbation Theory and Experimental-Theoretic Study of New Thiophene Isosters of Rasagiline. Current Drug Targets, 2017, 18, 511-521.	2.1	18

#	Article	IF	CITATIONS
37	Click Chemistry Approach to Assembly Proline Mimetic Libraries Containing 1,4-Substituted 1,2,3-Triazoles. ACS Combinatorial Science, 2008, 10, 372-375.	3.3	17
38	Stereoselective synthesis of polyhydroxylated pyrrolidines: a route to novel 3,5-bis(hydroxymethyl)pyrrolidines from 2-azabicyclo[2.2.1]hept-5-enes. Tetrahedron Letters, 2006, 47, 7595-7597.	1.4	16
39	Highly diastereoselective synthesis of 2-azabicyclo[2.2.1]hept-5-ene derivatives: Bronsted acid catalyzed aza-Diels–Alder reaction between cyclopentadiene and imino-acetates with two chiral auxiliaries. Tetrahedron, 2011, 67, 7162-7172.	1.9	16
40	1,3- versus 1,4-[ï€4+ï€2] Cycloadditions between methyl glyoxylate oxime and cyclopentadiene or cyclopentene. Tetrahedron, 2012, 68, 1682-1687.	1.9	16
41	Development of Fluorescent Probes that Target Serotonin 5-HT2B Receptors. Scientific Reports, 2017, 7, 10765.	3.3	15
42	Trifluorinated Pyrimidine-Based A _{2B} Antagonists: Optimization and Evidence of Stereospecific Recognition. Journal of Medicinal Chemistry, 2019, 62, 9315-9330.	6.4	15
43	Synthesis and characterization of all stereoisomers of 8-phenylmenthol. Tetrahedron: Asymmetry, 2000, 11, 4805-4815.	1.8	14
44	Synthesis of new 6-substituted purinyl-5′-nor-1′-homocarbanucleosides based on indanol. Tetrahedron, 2004, 60, 9245-9253.	1.9	14
45	Review of Bioinformatics and QSAR Studies of β-Secretase Inhibitors. Current Bioinformatics, 2011, 6, 3-15.	1.5	14
46	Review of Synthesis, Biological Assay, and QSAR Studies of HMGR Inhibitors. Current Topics in Medicinal Chemistry, 2012, 12, 895-919.	2.1	14
47	A route to selective functionalization of polyhydroxypyrrolidines. Tetrahedron Letters, 2012, 53, 1029-1032.	1.4	14
48	New Hexahydrocarbazoles and Spiro Indoles, and Their Affinity for D2 Dopamine and 5-HT2A Serotonin Receptors Chemical and Pharmaceutical Bulletin, 1999, 47, 1006-1009.	1.3	13
49	Divergent synthesis of two precursors of 3′-homo-2′-deoxy- and 2′-homo-3′-deoxy-carbocyclic nucleosides. Tetrahedron, 2002, 58, 8843-8849.	1.9	13
50	Synthesis of novel 1-alkyl-8-substituted-3-(3-methoxypropyl) xanthines as putative A2B receptor antagonists. Bioorganic and Medicinal Chemistry, 2009, 17, 3426-3432.	3.0	13
51	Divergent Solution-Phase Synthesis of Diarylpyrimidine Libraries as Selective A3 Adenosine Receptor Antagonists. ACS Combinatorial Science, 2009, 11, 519-522.	3.3	13
52	3D MI-DRAGON: New Model for the Reconstruction of US FDA Drug- Target Network and Theoretical-Experimental Studies of Inhibitors of Rasagiline Derivatives for AChE. Current Topics in Medicinal Chemistry, 2012, 12, 1843-1865.	2.1	13
53	Selective and potent adenosine A3 receptor antagonists by methoxyaryl substitution on the N-(2,6-diarylpyrimidin-4-yl)acetamide scaffold. European Journal of Medicinal Chemistry, 2013, 59, 235-242.	5.5	13
54	Synthesis by microwave-assisted 1,3-dipolar cycloaddition of 1,2,3-triazole 1′-homo-3′-isoazanucleosides and evaluation of their anticancer activity. European Journal of Medicinal Chemistry, 2015, 98, 212-220.	5.5	13

#	Article	IF	CITATIONS
55	Synthesis and Antiviral and Cytostatic Activities of Carbocyclic Nucleosides Incorporating a Modified Cyclobutane Ring. Archiv Der Pharmazie, 1999, 332, 348-352.	4.1	12
56	Synthetic approaches to (±)-c-4-amino-r-1,c-2,t-3-cyclopentanetrimethanol: a precursor of higher homologues of xylo-carbocyclic nucleosides. Tetrahedron, 2002, 58, 967-974.	1.9	12
57	2-Substituted 4-, 5-, and 6-[(1E)-3-oxo-3-phenylprop-1-en-1-yl]pyridazin-3(2H)-ones and 2-substituted 4,5-bis[(1E)-3-oxo-3-phenylprop-1-en-1-yl]pyridazin-3(2H)-ones as potent platelet aggregation inhibitors: Design, synthesis, and SAR studies. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 793-797.	2.2	12
58	1,3-Dialkyl-8-N-substituted benzyloxycarbonylamino-9-deazaxanthines as potent adenosine receptor ligands: Design, synthesis, structure–affinity and structure–selectivity relationships. Bioorganic and Medicinal Chemistry, 2009, 17, 3618-3629.	3.0	12
59	Synthesis and pharmacological evaluation of novel 1- and 8-substituted-3-furfuryl xanthines as adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 2009, 17, 6755-6760.	3.0	12
60	Novel <scp>l</scp> -prolyl- <scp>l</scp> -leucylglycinamide (PLG) tripeptidomimetics based on a 2-azanorbornane scaffold as positive allosteric modulators of the D ₂ R. Organic and Biomolecular Chemistry, 2016, 14, 11065-11069.	2.8	12
61	Highly efficient one-pot assembly of peptides by double chemoselective coupling. Organic and Biomolecular Chemistry, 2017, 15, 7533-7542.	2.8	12
62	Catalytic performance of a metal-free graphene oxide-Al2O3 composite assembled by 3D printing. Journal of the European Ceramic Society, 2021, 41, 1399-1406.	5.7	12
63	Pyridazine Derivatives, VII. Synthesis and Hypotensive Activity of 3-Hydrazinocycloalkyl[1,2-c]pyridazines and their Derivatives. Archiv Der Pharmazie, 1989, 322, 331-336.	4.1	11
64	Pyridazine derivatives XII. Synthesis and antipsychotic-antidepressant activity of some butyrophenone derivatives of 6-phenylpyridazine. European Journal of Medicinal Chemistry, 1994, 29, 831-839.	5.5	11
65	Synthesis, Antiviral and Cytostatic Activities of Carbocyclic Nucleosides Incorporating a Modified Cyclopentane Ring. Part 2: ¹ Adenosine and Uridine Analogues. Nucleosides & Nucleotides, 1998, 17, 1255-1266.	0.5	11
66	Synthesis of Polyhydroxylated Pyrrolidines and Aziridinopyrrolidines from [4Ï€+2Ï€] Cycloadducts of Cyclopentadiene and Imines/2 <i>H</i> -Azirines. Synthesis, 2008, 2008, 971-977.	2.3	11
67	Synthesis, Pharmacological, and Biological Evaluation of 2-Furoyl-Based MIF-1 Peptidomimetics and the Development of a General-Purpose Model for Allosteric Modulators (ALLOPTML). ACS Chemical Neuroscience, 2021, 12, 203-215.	3.5	11
68	Theoretical study of GSKâ^'3α: neural networks QSAR studies for the design of new inhibitors using 2D descriptors. Molecular Diversity, 2011, 15, 947-955.	3.9	10
69	The exo-selectivity of the new non-natural chiral auxiliary (+)-(1R,endo)-2-benzonorbornenol in an asymmetric aza-Diels–Alder reaction. Tetrahedron Letters, 2003, 44, 431-433.	1.4	9
70	A Convenient Synthesis of New Purinyl-homo-carbonucleosides on a Cyclopentane Ring Fused with Pyridazine. Synthesis, 2004, 2004, 2855-2862.	2.3	9
71	Synthesis and pharmacological evaluation of novel substituted 9-deazaxanthines as A2B receptor antagonists. European Journal of Medicinal Chemistry, 2010, 45, 2884-2892.	5.5	9
72	Perturbation Theory Machine Learning Modeling of Immunotoxicity for Drugs Targeting Inflammatory Cytokines and Study of the Antimicrobial G1 Using Cytometric Bead Arrays. Chemical Research in Toxicology, 2019, 32, 1811-1823.	3.3	9

#	Article	IF	CITATIONS
73	Inversion of Enantioselectivity in the Diels-Alder Synthesis of 2-Azabicyclo- [2.2.1]hept-5-en-3-one from Cyclopentadiene and Chiral Sulfonyl Cyanides. Heterocycles, 1997, 45, 1745.	0.7	8
74	A new, convenient synthesis of the chiral auxiliary (+)-8-phenylisomenthol. Tetrahedron Letters, 2001, 42, 5239-5240.	1.4	8
75	Synthesis of methyl (±)-3,5-bis(substitutedmethyl)pyrrolidine-2-carboxylates: a convenient approach to proline-mimetics. Tetrahedron, 2010, 66, 6797-6805.	1.9	8
76	Synthesis and pharmacological evaluation of novel 1,3,8- and 1,3,7,8-substituted xanthines as adenosine receptor antagonists. Bioorganic and Medicinal Chemistry, 2010, 18, 2001-2009.	3.0	8
77	Enantiopure synthesis of 7-(1-pyrindanyl)propargyl ethers as rasagiline analogues via chemical or enzymatic resolution of 1-pyrindan-7-ol. RSC Advances, 2015, 5, 104509-104515.	3.6	8
78	On the scope of oxidation of tertiary amines: Meisenheimer rearrangements versus Cope elimination in 2-(cyanoethyl)-2-azanorbornanes. Organic Chemistry Frontiers, 2016, 3, 1624-1634.	4.5	8
79	Synthesis, Pharmacological, and Biological Evaluation of MIF-1 Picolinoyl Peptidomimetics as Positive Allosteric Modulators of D ₂ R. ACS Chemical Neuroscience, 2019, 10, 3690-3702.	3.5	8
80	A _{2B} adenosine receptor antagonists rescue lymphocyte activity in adenosine-producing patient-derived cancer models. , 2022, 10, e004592.		8
81	Synthesis and Antiviral Activity of Carbocyclic Nucleosides Incorporating a Modified Cyclopentane Ring. Part 3: Adenosine and Uridine Analogues. Nucleosides & Nucleotides, 1999, 18, 2253-2263.	0.5	7
82	Theoretical Prediction of Antiproliferative Activity against Murine Leukemia Tumor Cell Line (L1210). 3Dâ€Morse Descriptor and its Application in Computational Chemistry. QSAR and Combinatorial Science, 2009, 28, 98-110.	1.4	7
83	A TOPological Sub-structural Molecular Design (TOPS-MODE)-QSAR approach for modeling the antiproliferative activity against murine leukemia tumor cell line (L1210). Bioorganic and Medicinal Chemistry, 2009, 17, 537-547.	3.0	7
84	Phosphorylation of 2-azabicyclo[2.2.1]hept-5-ene and 2-hydroxy-2-azabicyclo[2.2.1]hept-5-ene systems: synthesis and mechanistic study. New Journal of Chemistry, 2010, 34, 2546.	2.8	7
85	Review of Synthesis, Assay, and Prediction of β and γ-secretase Inhibitors. Current Topics in Medicinal Chemistry, 2012, 12, 828-844.	2.1	7
86	An Efficient Method for Preparation of Chiral Arylmenthol Glyoxylates. Synthesis, 1998, 1998, 1998, 1590-1592.	2.3	6
87	Synthesis of (1R,3R)-3-[2-(Aminoethyl)-2,2-dimethylcyclobutyl]methanol and (1S,3R)-(3-Amino-2,2-dimethylcyclobutyl)methanol from (+)-Nopinone. Synthesis, 2000, 2000, 1459-1463.	2.3	6
88	A convenient route to both enantiomers of endo-2-benzonorbornenol via lipase catalysed resolution of the racemic mixture. Tetrahedron: Asymmetry, 2001, 12, 365-368.	1.8	6
89	NEW CARBOCYCLIC NUCLEOSIDES DERIVED FROM INDAN. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1127-1128.	1.1	6
90	Synthesis of Novel Purinyl-1'-homocarbanucleosides Based on a Cyclopenta[b]pyrazine System. Chemical and Pharmaceutical Bulletin, 2008, 56, 654-658.	1.3	6

#	Article	IF	CITATIONS
91	Highly stereoselective cycloadditions of Danishefsky's diene to (â^')-8-phenylmenthyl and (+)-8-phenylneomenthyl glyoxylate N-phenylethylimines. Tetrahedron, 2013, 69, 2909-2919.	1.9	6
92	Discovery of New Potent Positive Allosteric Modulators of Dopamine D ₂ Receptors: Insights into the Bioisosteric Replacement of Proline to 3-Furoic Acid in the Melanostatin Neuropeptide. Journal of Medicinal Chemistry, 2021, 64, 6209-6220.	6.4	6
93	Immunotoxicity, Flow Cytometry, and Chemoinformatics: Review, Bibliometric Analysis, and New QSAR Model of Drug Effects Over Macrophages. Current Topics in Medicinal Chemistry, 2012, 12, 1815-1833.	2.1	6
94	Review of Bioinformatics and Theoretical Studies of Acetylcholinesterase Inhibitors. Current Bioinformatics, 2013, 8, 496-510.	1.5	6
95	SYNTHESIS OF FLUORESCENCE PROBES WITH A 2,6-AMINONAPHTHALENE-CARBONYL CHROMOPHORE. Organic Preparations and Procedures International, 2000, 32, 367-372.	1.3	5
96	UNEXPECTED DIECKMANN CONDENSATION IN THE SYNTHESIS OF METHYL 6-(6-METHOXY-2-NAPHTHYL)-6-OXOHEXANOATE WITH AN ARYLCADMIUM REAGENT. Organic Preparations and Procedures International, 2000, 32, 563-567.	1.3	5
97	Review of Synthesis, Biological Assay and QSAR Studies of β-Secretase Inhibitors. Current Computer-Aided Drug Design, 2011, 7, 263-275.	1.2	5
98	The origin of stereoselectivity in cycloaddition reactions promoted by stereoisomers of 8-phenylmenthyl glyoxylate oxime. Tetrahedron, 2013, 69, 5048-5057.	1.9	5
99	Synthesis of New Propargylated 1-Pyrindane Derivatives as Rasagiline Analogues. Synlett, 2013, 24, 837-838.	1.8	5
100	Structureâ€Based Design of New KSPâ€Eg5 Inhibitors Assisted by a Targeted Multicomponent Reaction. ChemBioChem, 2014, 15, 1471-1480.	2.6	5
101	Reactivity and Mechanistic Studies of the Reactions of Chlorodiphenylphosphine and Its Oxide with Methyl Glyoxylate, Glyoxylate Oximes, and Methyl Cyanoformate. Heteroatom Chemistry, 2015, 26, 249-256.	0.7	5
102	Multicomponent Assembly of the Kinesin Spindle Protein Inhibitor CPUYJ039 and Analogues as Antimitotic Agents. ACS Combinatorial Science, 2017, 19, 153-160.	3.8	5
103	Anionic ring opening of norbornenes fused to heterocycles. Tetrahedron, 2004, 60, 10343-10352.	1.9	4
104	Ethyl 2-(Diisopropoxyphosphoryl)-2H-azirine-3-carboxylate: Reactions with Nucleophilic 1,3-Dienes. Synthesis, 2009, 2009, 3263-3266.	2.3	4
105	Azaâ€Diels–Alder reaction between cyclopentadiene and protonated <i>N</i> â€phenylethyliminoacetates of 8â€phenylmenthol and 8â€phenyl <i>neo</i> menthol: a density functional theory study. Journal of Physical Organic Chemistry, 2012, 25, 515-522.	1.9	4
106	Patents of bio-active compounds based on computer-aided drug discovery techniques. Frontiers in Bioscience - Elite, 2013, E5, 399-407.	1.8	4
107	Endo-benzonorbornen-2-ol as an efficient non-natural chiral auxiliary in the asymmetric aza-Diels–Alder reactions between cyclopentadiene and (1-phenylethyl)iminoacetates. RSC Advances, 2014, 4, 57768-57772.	3.6	4
108	Synthesis and N-functionalization of isoxazolidines: a new approach to nucleoside analogues. Tetrahedron Letters, 2014, 55, 4628-4631.	1.4	4

#	Article	IF	CITATIONS
109	Synthesis and characterization of 1-pyrindane derivatives as rasagiline analogues. Chemical Data Collections, 2016, 5-6, 21-27.	2.3	4
110	Bioinspired design for the assembly of Glypromate® neuropeptide conjugates with active pharmaceutical ingredients. New Journal of Chemistry, 2020, 44, 21049-21063.	2.8	4
111	Review of Theoretical Models to Study Natural Products with Antiprotozoal Activity. Current Drug Targets, 2017, 18, 605-616.	2.1	4
112	SYNTHESIS OF (1R,3S)-3-AMINO-1,2,2-TRIMETHYLCYCLOPENTYLMETHANOL. Organic Preparations and Procedures International, 1998, 30, 71-78.	1.3	3
113	Synthesis of (±)-cis-3-Aminomethyl-1-indanylmethanol as a Precursor of Carbocyclic Analogues of Nucleosides. Nucleosides & Nucleotides, 1999, 18, 625-626.	0.5	3
114	Design, Synthesis, and Evaluation of Antineoplastic Activity of Novel Carbocyclic Nucleosides. Molecular Informatics, 2010, 29, 213-231.	2.5	3
115	Editorial [Hot Topic: QSAR Models for Computer-Aided Drug Design and Molecular Docking for Disorders of the Central Nervous System and Other Diseases]. Current Topics in Medicinal Chemistry, 2012, 12, 1731-1733.	2.1	3
116	A sustainable strategy for the assembly of Glypromate® and its structurally-related analogues by tandem sequential peptide coupling. Green Chemistry, 2020, 22, 3584-3596.	9.0	3
117	Potent and Subtype-Selective Dopamine D ₂ Receptor Biased Partial Agonists Discovered via an Ugi-Based Approach. Journal of Medicinal Chemistry, 2021, 64, 8710-8726.	6.4	3
118	Design, Synthesis, and Biological Evaluation of Hybrid Glypromate Analogues Using 2-Azanorbornane as a Prolyl and Pipecolyl Surrogate. ACS Chemical Neuroscience, 2021, 12, 3615-3624.	3.5	3
119	Experimental-Theoretic Approach to Drug-Lymphocyte Interactome Networks with Flow Cytometry and Spectral Moments Perturbation Theory. Current Pharmaceutical Design, 2016, 22, 5114-5119.	1.9	3
120	Exploring Non-orthosteric Interactions with a Series of Potent and Selective A ₃ Antagonists. ACS Medicinal Chemistry Letters, 2022, 13, 243-249.	2.8	3
121	Synthesis of Purinyl and Pyrimidinyl 1′(N)-Homocarbanucleosides Based on a 1-Methylcyclopenta[c]pyrazole Scaffold; Part 2. Synthesis, 2006, 2006, 3967-3972.	2.3	2
122	Immunotoxicity, Flow Cytometry, and Chemoinformatics: Review, Bibliometric Analysis, and New QSAR Model of Drug Effects Over Macrophages. Current Topics in Medicinal Chemistry, 2012, 12, 1815-1833.	2.1	2
123	Structural analysis of three methyl N-phosphorylated 5,6-dihydroxy-2-azabicyclo[2.2.1]heptane-3-carboxylates. Journal of Molecular Structure, 2012, 1007, 31-35.	3.6	2
124	Mechanistic insights for the transprotection of tertiary amines with Boc ₂ O <i>via</i> charged carbamates: access to both enantiomers of 2-azanorbornane-3- <i>exo</i> carboxylic acids. Organic Chemistry Frontiers, 2019, 6, 3540-3554.	4.5	2
125	(±)-3,5-Bis(substitutedmethyl)pyrrolidines: Application to the Synthesis of Analogues of glycine-L-proline-L-glutamic Acid (GPE). Current Organic Synthesis, 2018, 15, 230-236.	1.3	2
126	Optimization of 2-Amino-4,6-diarylpyrimidine-5-carbonitriles as Potent and Selective A1 Antagonists. Journal of Medicinal Chemistry, 2022, 65, 2091-2106.	6.4	2

#	Article	IF	CITATIONS
127	Enantioselective Synthesis of [(1R,3-exo)-2-Benzyl-2-azabicyclo[2.2.1]hept-5-en-3-yl]methanol via Aza-Diels-Alder Reaction. Synlett, 2005, 2005, 319-321.	1.8	1
128	Synthesis and Antiviral Activities of Novel Purinyl- and PyrimidinylÂcarbanucleosides Derived from Indan. Synthesis, 2008, 2008, 1845-1852.	2.3	1
129	A click chemistry approach to the synthesis of 3′-deoxy-2′-substituted carbanucleoside precursors. Tetrahedron, 2015, 71, 324-331.	1.9	1
130	Xâ€Ray Crystallography and Free Energy Calculations Reveal the Binding Mechanism of A _{2A} Adenosine Receptor Antagonists. Angewandte Chemie, 2020, 132, 16679-16686.	2.0	1
131	Methyl 2-diphenylphosphoryloxy-2-azabicyclo[2.2.1]hept-5-ene-3- <i>exo</i> -carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o188-o188.	0.2	1
132	Isolation and structural characterization of stable carbamic–carbonic anhydrides: an experimental and computational study. Organic Chemistry Frontiers, 2022, 9, 2154-2163.	4.5	1
133	Anionic Ring Opening of Norbornenes Fused to Heterocycles ChemInform, 2005, 36, no.	0.0	0
134	Synthesis and Biological Evaluation of 6-Substituted Purinylcarbanucleosides with a Cyclopenta[b]thiophene Pseudosugar. Synthesis, 2009, 2009, 2766-2772.	2.3	0
135	Advances towards the synthesis and characterization of five-membered cyclic alcohols and ketones. Chemical Data Collections, 2017, 9-10, 44-49.	2.3	0
136	(1RS,4RS,5RS)-Methyl 2-(3,5-dinitrobenzoyl)-2-oxa-3-azabicyclo[3.3.0]oct-7-ene-4-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o992-o993.	0.2	0
137	High-Order Perturbation Theory Models of Drug-Target Interactomes for Proteins Expressed on Networks of Hippocampus Brain Region of Alzheimer Disease Patients. , 2016, , 269-299.		0
138	One-pot Preparation and Characterisation of Five-membered Cyclic Alcohols. Letters in Organic Chemistry, 2018, 15, 546-550.	0.5	0