
Stefanos Mourdikoudis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1046886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transactions, 2015, 44, 17883-17905.	1.6	1,176
2	Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10, 12871-12934.	2.8	1,115
3	Oleylamine in Nanoparticle Synthesis. Chemistry of Materials, 2013, 25, 1465-1476.	3.2	982
4	Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environmental Science: Water Research and Technology, 2016, 2, 43-70.	1.2	187
5	Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. CrystEngComm, 2015, 17, 3727-3762.	1.3	113
6	Selective Synthesis of Cu ₂ O and Cu/Cu ₂ O NPs: Antifungal Activity to Yeast <i>Saccharomyces cerevisiae</i> and DNA Interaction. Inorganic Chemistry, 2014, 53, 9657-9666.	1.9	112
7	Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System. Journal of Physical Chemistry Letters, 2015, 6, 230-238.	2.1	82
8	Magnetic Nanoparticle Composites: Synergistic Effects and Applications. Advanced Science, 2021, 8, 2004951.	5.6	70
9	Controlled synthesis and phase characterization of Fe-based nanoparticles obtained by thermal decomposition. Journal of Magnetism and Magnetic Materials, 2007, 316, e1-e4.	1.0	64
10	Oleic acid/oleylamine ligand pair: a versatile combination in the synthesis of colloidal nanoparticles. Nanoscale Horizons, 2022, 7, 941-1015.	4.1	61
11	Controlling the crystal structure of Ni nanoparticles by the use of alkylamines. Journal of Magnetism and Magnetic Materials, 2009, 321, 2723-2728.	1.0	55
12	Magnetic hyperthermia efficiency and MRI contrast sensitivity of colloidal soft/hard ferrite nanoclusters. Journal of Colloid and Interface Science, 2018, 511, 101-109.	5.0	53
13	Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis. Nanoscale, 2013, 5, 4776.	2.8	51
14	Biological relevance of CuFeO2 nanoparticles: Antibacterial and anti-inflammatory activity, genotoxicity, DNA and protein interactions. Materials Science and Engineering C, 2019, 99, 264-274.	3.8	43
15	Governing the morphology of Pt–Au heteronanocrystals with improved electrocatalytic performance. Nanoscale, 2015, 7, 8739-8747.	2.8	42
16	Nickel Nanoparticle-Doped Paper as a Bioactive Scaffold for Targeted and Robust Immobilization of Functional Proteins. ACS Nano, 2014, 8, 6221-6231.	7.3	38
17	Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared. Nature Communications, 2017, 8, 14925.	5.8	38
18	Plasmonic Metallic Heteromeric Nanostructures. Small, 2020, 16, e2002588.	5.2	33

#	Article	IF	CITATIONS
19	Synthesis and biological evaluation of PEGylated CuO nanoparticles. Journal of Inorganic Biochemistry, 2016, 164, 82-90.	1.5	32
20	Elucidation of one step synthesis of PEGylated CuFe bimetallic nanoparticles. Antimicrobial activity of CuFe@PEG vs Cu@PEG. Journal of Inorganic Biochemistry, 2017, 177, 159-170.	1.5	32
21	Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance. CrystEngComm, 2016, 18, 3422-3427.	1.3	31
22	Stable Iron Oxide Nanoflowers with Exceptional Magnetic Heating Efficiency: Simple and Fast Polyol Synthesis. ACS Applied Materials & Interfaces, 2021, 13, 45870-45880.	4.0	28
23	CuZn and ZnO Nanoflowers as Nano-Fungicides against Botrytis cinerea and Sclerotinia sclerotiorum: Phytoprotection, Translocation, and Impact after Foliar Application. Materials, 2021, 14, 7600.	1.3	28
24	Highly porous palladium nanodendrites: wet-chemical synthesis, electron tomography and catalytic activity. Dalton Transactions, 2019, 48, 3758-3767.	1.6	25
25	Interaction of ZnO Nanostructures with Proteins: In Vitro Fibrillation/Antifibrillation Studies and in Silico Molecular Docking Simulations. ACS Chemical Neuroscience, 2020, 11, 436-444.	1.7	24
26	Air-Stable Anisotropic Monocrystalline Nickel Nanowires Characterized Using Electron Holography. Nano Letters, 2018, 18, 1733-1738.	4.5	23
27	Tailoring Ca-Based Nanoparticles by Polyol Process for Use as Nematicidals and pH Adjusters in Agriculture. ACS Applied Nano Materials, 2019, 2, 3870-3881.	2.4	23
28	Rapid Millifluidic Synthesis of Stable High Magnetic Moment Fe _{<i>x</i>} C _{<i>y</i>} Nanoparticles for Hyperthermia. ACS Applied Materials & Interfaces, 2020, 12, 28520-28531.	4.0	20
29	Metal–Organic Pathways for Anisotropic Growth of a Highly Symmetrical Crystal Structure: Example of the fcc Ni. Langmuir, 2013, 29, 13491-13501.	1.6	19
30	Development and Characterization of Curcumin-Silver Nanoparticles as a Promising Formulation to Test on Human Pterygium-Derived Keratinocytes. Molecules, 2022, 27, 282.	1.7	13
31	A study on the synthesis of Ni ₅₀ Co ₅₀ alloy nanostructures with tuned morphology through metal–organic chemical routes. Dalton Transactions, 2014, 43, 8469-8479.	1.6	12
32	Improving C–N–FeO _{<i>x</i>} Oxygen Evolution Electrocatalysts through Hydroxyl-Modulated Local Coordination Environment. ACS Catalysis, 2022, 12, 7443-7452.	5.5	12
33	Colloidal chemical bottom-up synthesis routes of pnictogen (As, Sb, Bi) nanostructures with tailored properties and applications: a summary of the state of the art and main insights. CrystEngComm, 2021, 23, 7876-7898.	1.3	11
34	Magnetic nanoemulsions as candidates for Alzheimer's disease dual imaging theranostics. Nanotechnology, 2020, 31, 465702.	1.3	11
35	Simple Bottom-Up Synthesis of Bismuthene Nanostructures with a Suitable Morphology for Competitive Performance in the Electrocatalytic Nitrogen Reduction Reaction. Inorganic Chemistry, 2022, 61, 5524-5538.	1.9	9
36	Structure Differentiation of Hydrophilic Brass Nanoparticles Using a Polyol Toolbox. Frontiers in Chemistry, 2019, 7, 817.	1.8	6

#	Article	IF	CITATIONS
37	Heat-Up Colloidal Synthesis of Shape-Controlled Cu-Se-S Nanostructures—Role of Precursor and Surfactant Reactivity and Performance in N2 Electroreduction. Nanomaterials, 2021, 11, 3369.	1.9	6
38	Hydrophilic Gold Supracrystals Differing by the Nanoparticle Crystalline Structure. Journal of Physical Chemistry C, 2017, 121, 10670-10680.	1.5	5
39	Dimpled SiO2@γ-Fe2O3 nanocomposites – fabrication and use for arsenic adsorption in aqueous medium. RSC Advances, 2021, 11, 1343-1353.	1.7	3