
Corinne F Maurice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1046817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505, 559-563.	27.8	7,592
2	Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness. Nature, 2014, 514, 638-641.	27.8	428
3	Marked seasonal variation in the wild mouse gut microbiota. ISME Journal, 2015, 9, 2423-2434.	9.8	282
4	Ménage à trois in the human gut: interactions between host, bacteria and phages. Nature Reviews Microbiology, 2017, 15, 397-408.	28.6	277
5	Cooking shapes the structure and function of the gut microbiome. Nature Microbiology, 2019, 4, 2052-2063.	13.3	112
6	mockrobiota: a Public Resource for Microbiome Bioinformatics Benchmarking. MSystems, 2016, 1, .	3.8	89
7	Bacteriophages Isolated from Stunted Children Can Regulate Gut Bacterial Communities in an Age-Specific Manner. Cell Host and Microbe, 2020, 27, 199-212.e5.	11.0	85
8	The human gut microbiome and health inequities. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	82
9	Common Oral Medications Lead to Prophage Induction in Bacterial Isolates from the Human Gut. Viruses, 2021, 13, 455.	3.3	35
10	Phages in the infant gut: a framework for virome development during early life. ISME Journal, 2022, 16, 323-330.	9.8	33
11	Disentangling the relative influence of bacterioplankton phylogeny and metabolism on lysogeny in reservoirs and lagoons. ISME Journal, 2011, 5, 831-842.	9.8	31
12	Bacteriophages: Uncharacterized and Dynamic Regulators of the Immune System. Mediators of Inflammation, 2019, 2019, 1-14.	3.0	30
13	Improving the Inhibitory Effect of Phages against Pseudomonas aeruginosa Isolated from a Burn Patient Using a Combination of Phages and Antibiotics. Viruses, 2021, 13, 334.	3.3	25
14	The complex interplay of diet, xenobiotics, and microbial metabolism in the gut: Implications for clinical outcomes. Clinical Pharmacology and Therapeutics, 2016, 99, 588-599.	4.7	24
15	Transplantation of bacteriophages from ulcerative colitis patients shifts the gut bacteriome and exacerbates the severity of DSS colitis. Microbiome, 2022, 10, .	11.1	23
16	A Single-Cell Analysis of Virioplankton Adsorption, Infection, and Intracellular Abundance in Different Bacterioplankton Physiologic Categories. Microbial Ecology, 2011, 62, 669-678.	2.8	22
17	Quantifying the metabolic activities of human-associated microbial communities across multiple ecological scales. FEMS Microbiology Reviews, 2013, 37, 830-848.	8.6	22
18	Absence of the Caspases 1/11 Modulates Liver Global Lipid Profile and Gut Microbiota in High-Fat-Diet-Induced Obese Mice. Frontiers in Immunology, 2019, 10, 2926.	4.8	16

CORINNE F MAURICE

#	Article	IF	CITATIONS
19	Characterization of the intestinal microbiota during <i>Citrobacter rodentium</i> infection in a mouse model of infection-triggered Parkinson's disease. Gut Microbes, 2020, 12, 1830694.	9.8	14
20	Multidisciplinarity in Microbiome Research: A Challenge and Opportunity to Rethink Causation, Variability, and Scale. BioEssays, 2019, 41, e1900007.	2.5	12
21	Drugging the gut microbiota: towardÂrational modulation of bacterial composition in the gut. Current Opinion in Chemical Biology, 2020, 56, 10-15.	6.1	11
22	Gut microbiota modulation induced by Zika virus infection in immunocompetent mice. Scientific Reports, 2021, 11, 1421.	3.3	10
23	Considering the Other Half of the Gut Microbiome: Bacteriophages. MSystems, 2019, 4, .	3.8	9
24	Translational activity is uncoupled from nucleic acid content in bacterial cells of the human gut microbiota. Gut Microbes, 2021, 13, 1-15.	9.8	9
25	OnePetri: Accelerating Common Bacteriophage Petri Dish Assays with Computer Vision. Phage, 2021, 2, 224-231.	1.7	8
26	The Mini Colon Model: a benchtop multi-bioreactor system to investigate the gut microbiome. Gut Microbes, 2022, 14, .	9.8	7
27	Not Just a Passing Phage. Cell Host and Microbe, 2019, 26, 448-449.	11.0	4
28	Effects of oxygen exposure on relative nucleic acid content and membrane integrity in the human gut microbiota. PeerJ, 2021, 9, e10602.	2.0	3
29	The Mammalian Gut as a Matchmaker. Cell Host and Microbe, 2017, 22, 726-727.	11.0	2
30	Changes in Gut Bacterial Translation Occur before Symptom Onset and Dysbiosis in Dextran Sodium Sulfate-Induced Murine Colitis. MSystems, 2021, 6, e0050721.	3.8	2
31	Polysaccharide Protection: How Bacteroides thetaiotaomicron Survives an Antibiotic Attack. Cell Metabolism, 2019, 30, 619-621.	16.2	1
32	A phingerprint for rheumatoid arthritis development?. Cell Host and Microbe, 2021, 29, 678-680.	11.0	1
33	The role of the NLRP3 inflammasome and Caspase-1/11 in lipid inflammatory metabolism and gut microbiota profile of obese animals high fat diet-induced. Surgery for Obesity and Related Diseases,	1.2	0