Caroline A E Strömberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10467872/publications.pdf

Version: 2024-02-01

27 papers

3,368 citations

430874 18 h-index ⁵⁵²⁷⁸¹
26
g-index

27 all docs

27 docs citations

times ranked

27

4325 citing authors

#	Article	IF	Citations
1	Whipping phytoliths into shape (and size). A Commentary on: â€Inter- and intraspecific variation in grass phytolith shape and size: a geometric morphometrics perspective'. Annals of Botany, 2021, 127, iii-iv.	2.9	O
2	Patagonian Aridification at the Onset of the Midâ€Miocene Climatic Optimum. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003956.	2.9	14
3	Lineageâ€based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models. New Phytologist, 2020, 228, 15-23.	7.3	20
4	High silicon concentrations in grasses are linked to environmental conditions and not associated with C ₄ photosynthesis. Global Change Biology, 2020, 26, 7128-7143.	9.5	15
5	On the Young Savannas in the Land of Ancient Forests. Fascinating Life Sciences, 2020, , 271-298.	0.9	32
6	3D shape analysis of grass silica short cell phytoliths: a new method for fossil classification and analysis of shape evolution. New Phytologist, 2020, 228, 376-392.	7.3	18
7	International Code for Phytolith Nomenclature (ICPN) 2.0. Annals of Botany, 2019, 124, 189-199.	2.9	320
8	Evolution of phytolith deposition in modern bryophytes, and implications for the fossil record and influence on silica cycle in early land plant evolution. New Phytologist, 2019, 221, 2273-2285.	7.3	13
9	Contribution of forests to the carbon sink via biologically-mediated silicate weathering: A case study of China. Science of the Total Environment, 2018, 615, 1-8.	8.0	31
10	Phytoliths in Paleoecology: Analytical Considerations, Current Use, and Future Directions. Vertebrate Paleobiology and Paleoanthropology, 2018, , 235-287.	0.5	42
11	Climatic Controls on C4 Grassland Distributions During the Neogene: A Model-Data Comparison. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	15
12	Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives. Trends in Ecology and Evolution, 2017, 32, 211-226.	8.7	175
13	Phytolith carbon sequestration in global terrestrial biomes. Science of the Total Environment, 2017, 603-604, 502-509.	8.0	57
14	Comment on "The extent of forest in dryland biomes― Science, 2017, 358, .	12.6	57
15	Functions of phytoliths in vascular plants: an evolutionary perspective. Functional Ecology, 2016, 30, 1286-1297.	3.6	102
16	Light Environment and Epidermal Cell Morphology in Grasses. International Journal of Plant Sciences, 2015, 176, 832-847.	1.3	10
17	Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science, 2015, 347, 258-261.	12.6	158
18	Biogeographically distinct controls on <scp>C</scp> ₃ and <scp>C</scp> ₄ grass distributions: merging community and physiological ecology. Global Ecology and Biogeography, 2015, 24, 304-313.	5.8	33

#	Article	IF	Citations
19	Molecular Dating, Evolutionary Rates, and the Age of the Grasses. Systematic Biology, 2014, 63, 153-165.	5.6	155
20	Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nature Communications, 2013, 4, 1478.	12.8	165
21	Floral and environmental gradients on a Late Cretaceous landscape. Ecological Monographs, 2012, 82, 23-47.	5.4	32
22	The Neogene transition from C ₃ to C ₄ grasslands in North America: assemblage analysis of fossil phytoliths. Paleobiology, 2011, 37, 50-71.	2.0	110
23	The Neogene transition from C ₃ to C ₄ grasslands in North America: stable carbon isotope ratios of fossil phytoliths. Paleobiology, 2011, 37, 23-49.	2.0	70
24	The Origins of C ₄ Grasslands: Integrating Evolutionary and Ecosystem Science. Science, 2010, 328, 587-591.	12.6	899
25	Evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology, 2006, 32, 236-258.	2.0	146
26	Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11980-11984.	7.1	285
27	Dinosaur Coprolites and the Early Evolution of Grasses and Grazers. Science, 2005, 310, 1177-1180.	12.6	394