
Natalia Dounskaia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1046786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Egocentric and Allocentric Constraints in the Expression of Patterns of Interlimb Coordination. Journal of Cognitive Neuroscience, 1997, 9, 348-377.	2.3	170
2	The internal model and the leading joint hypothesis: implications for control of multi-joint movements. Experimental Brain Research, 2005, 166, 1-16.	1.5	163
3	Commonalities and differences in control of various drawing movements. Experimental Brain Research, 2002, 146, 11-25.	1.5	89
4	Interjoint coordination during handwriting-like movements. Experimental Brain Research, 2000, 135, 127-140.	1.5	76
5	Influence of biomechanical factors on substructure of pointing movements. Experimental Brain Research, 2005, 164, 505-516.	1.5	76
6	Control of Human Limb Movements: The Leading Joint Hypothesis and Its Practical Applications. Exercise and Sport Sciences Reviews, 2010, 38, 201-208.	3.0	75
7	Constraints during bimanual coordination: the role of direction in relation to amplitude and force requirements. Behavioural Brain Research, 2001, 123, 201-218.	2.2	70
8	The role of intrinsic factors in control of arm movement direction: implications from directional preferences. Journal of Neurophysiology, 2011, 105, 999-1010.	1.8	67
9	The role of vision, speed, and attention in overcoming directional biases during arm movements. Experimental Brain Research, 2011, 209, 299-309.	1.5	53
10	Patterns of Bimanual Interference Reveal Movement Encoding within a Radial Egocentric Reference Frame. Journal of Cognitive Neuroscience, 2002, 14, 463-471.	2.3	49
11	Origins of submovements during pointing movements. Acta Psychologica, 2008, 129, 91-100.	1.5	49
12	Directional interference during bimanual coordination: is interlimb coupling mediated by afferent or efferent processes. Behavioural Brain Research, 2003, 139, 177-195.	2.2	44
13	Biased wrist and finger coordination in Parkinsonian patients during performance of graphical tasks. Neuropsychologia, 2009, 47, 2504-2514.	1.6	36
14	Limitations on Coupling of Bimanual Movements Caused by Arm Dominance: When the Muscle Homology Principle Fails. Journal of Neurophysiology, 2010, 103, 2027-2038.	1.8	33
15	A preferred pattern of joint coordination during arm movements with redundant degrees of freedom. Journal of Neurophysiology, 2014, 112, 1040-1053.	1.8	33
16	Efficient control of arm movements in advanced age. Experimental Brain Research, 2007, 177, 78-94.	1,5	30
17	Strategy of arm movement control is determined by minimization of neural effort for joint coordination. Experimental Brain Research, 2016, 234, 1335-1350.	1.5	29
18	The role of different submovement types during pointing to a target. Experimental Brain Research, 2006, 176, 132-149.	1.5	28

NATALIA DOUNSKAIA

#	Article	IF	CITATIONS
19	Disruptions in joint control during drawing arm movements in Parkinson's disease. Experimental Brain Research, 2005, 164, 311-322.	1.5	27
20	Multicomponent Control Strategy Underlying Production of Maximal Hand Velocity During Horizontal Arm Swing. Journal of Neurophysiology, 2009, 102, 2889-2899.	1.8	24
21	Origins of submovements in movements of elderly adults. Journal of NeuroEngineering and Rehabilitation, 2008, 5, 28.	4.6	22
22	Kinematic invariants during cyclical arm movements. Biological Cybernetics, 2007, 96, 147-163.	1.3	20
23	Joint-specific disruption of control during arm movements in Parkinson's disease. Experimental Brain Research, 2009, 195, 73-87.	1.5	20
24	Load emphasizes muscle effort minimization during selection of arm movement direction. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 70.	4.6	18
25	Interlimb differences of directional biases for stroke production. Experimental Brain Research, 2012, 216, 263-274.	1.5	18
26	Intersegmental dynamics shape joint coordination during catching in typically developing children but not in children with developmental coordination disorder. Journal of Neurophysiology, 2014, 111, 1417-1428.	1.8	17
27	Submovements during pointing movements in Parkinson's disease. Experimental Brain Research, 2009, 193, 529-544.	1.5	15
28	Preferred directions of arm movements are independent of visual perception of spatial directions. Experimental Brain Research, 2014, 232, 575-586.	1.5	11
29	Neural control of arm movements reveals a tendency to use gravity to simplify joint coordination rather than to decrease muscle effort. Neuroscience, 2016, 339, 418-432.	2.3	11
30	A simple joint control pattern dominates performance of unconstrained arm movements of daily living tasks. PLoS ONE, 2020, 15, e0235813.	2.5	11
31	Perception—Action Coupling during Bimanual Coordination: The Role of Visual Perception in the Coalition of Constraints That Govern Bimanual Action. Journal of Motor Behavior, 2004, 36, 394-398.	0.9	8
32	Effect of Stroke on Joint Control during Reach-to-Grasp: A Preliminary Study. Journal of Motor Behavior, 2020, 52, 294-310.	0.9	7
33	Destabilization of the Upright Posture Through Elevation of the Center of Mass. Annals of Biomedical Engineering, 2018, 46, 318-323.	2.5	6
34	Generalization of the resource-rationality principle to neural control of goal-directed movements. Behavioral and Brain Sciences, 2020, 43, e10.	0.7	4
35	Influence of workspace constraints on directional preferences of 3D arm movements. Experimental Brain Research, 2015, 233, 2141-2153.	1.5	3
36	The role of intersegmental dynamics in coordination of the forelimb joints during unperturbed and perturbed skilled locomotion. Journal of Neurophysiology, 2018, 120, 1547-1557.	1.8	3

#	Article	IF	CITATIONS
37	Movement planning and movement execution: What is in between?. Behavioral and Brain Sciences, 2001, 24, 41-42.	0.7	2
38	Inclusion of neural effort in cost function can explain perceptual decision suboptimality. Behavioral and Brain Sciences, 2018, 41, e242.	0.7	1
39	Unique features of human movement control predicted by the leading joint hypothesis. Behavioral and Brain Sciences, 2012, 35, 223-224.	0.7	Ο