Jian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1046730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unidirectional continuous fiber-reinforced polypropylene single-polymer composites prepared by extrusion–calendering process. Journal of Thermoplastic Composite Materials, 2022, 35, 303-319.	4.2	5
2	Self-reinforced composites based on polypropylene fiber and graphene nano-platelets/polypropylene film. Carbon, 2022, 189, 586-595.	10.3	17
3	Effects of Injection Molding Parameters on Properties of Insert-Injection Molded Polypropylene Single-Polymer Composites. Polymers, 2022, 14, 23.	4.5	16
4	Prediction of Specific Volume of Polypropylene at High Cooling Rates by Artificial Neural Networks. Industrial & Engineering Chemistry Research, 2021, 60, 14434-14446.	3.7	2
5	Process dependence of pressure-specific volume-temperature measurement for amorphous polymer: Acrylonitrile-butadiene-styrene. Polymer Testing, 2020, 81, 106232.	4.8	12
6	Modeling of pressure-specific volume-temperature behavior of polymers considering the dependence of cooling and heating processes. Materials and Design, 2020, 196, 109110.	7.0	8
7	The incorporation of graphene to enhance mechanical properties of polypropylene self-reinforced polymer composites. Materials and Design, 2020, 195, 109073.	7.0	39
8	Measurement of specific volume of polymers under simulated injection molding processes. Materials and Design, 2020, 196, 109136.	7.0	21
9	Non-Isothermal Crystallisation Kinetics of Polypropylene at High Cooling Rates and Comparison to the Continuous Two-Domain pvT Model. Polymers, 2020, 12, 1515.	4.5	6
10	Numerical Simulation of Reaction Efficiency of Vinyl Chloride Suspension Polymerization Reactor. IOP Conference Series: Earth and Environmental Science, 2020, 546, 042059.	0.3	3
11	Continuous Two-Domain Equations of State for the Description of the Pressure-Specific Volume-Temperature Behavior of Polymers. Polymers, 2020, 12, 409.	4.5	18
12	Influence of measurement processes on pressure-specific volume-temperature relationships of semi-crystalline polymer: Polypropylene. Polymer Testing, 2019, 78, 105992.	4.8	16
13	Internal circulation clamping system with supplementary volume for small and medium types of two-platen injection molding machine. Advanced Industrial and Engineering Polymer Research, 2019, 2, 116-120.	4.7	0
14	Modeling of pvT behavior of semi-crystalline polymer based on the two-domain Tait equation of state for injection molding. Materials and Design, 2019, 183, 108149.	7.0	34
15	Extrusion–calendering process of singleâ€polymer composites based on polyethylene. Polymer Engineering and Science, 2018, 58, 2156-2165.	3.1	14
16	Flexural properties and morphology of microcellular-insert injection molded all-polypropylene composite foams. Composite Structures, 2018, 187, 403-410.	5.8	20
17	Properties of Insert Injection Molded Polypropylene Single-Polymer Composites With Uniaxial Fibers. Macromolecular Symposia, 2018, 378, 1600154.	0.7	0
18	Insert injection molding of low-density polyethylene single-polymer composites reinforced with ultrahigh-molecular-weight polyethylene fabric. Journal of Thermoplastic Composite Materials, 2018, 31, 1013-1028.	4.2	16

Jian Wang

#	Article	IF	CITATIONS
19	Ceramic Injection Molding. , 2016, , .		3
20	Microcellular polypropylene single-polymer composites prepared by insert-microcellular injection molding. Composites Part A: Applied Science and Manufacturing, 2016, 90, 567-576.	7.6	17
21	Insert injection molding of high-density polyethylene single-polymer composites. Polymer Engineering and Science, 2015, 55, 2448-2456.	3.1	12
22	Properties of polypropylene single-polymer composites produced by the undercooling melt film stacking method. Composites Science and Technology, 2015, 107, 82-88.	7.8	12
23	Development and characterization of insert injection moulded polypropylene single-polymer composites with sandwiched woven fabric. Composites Science and Technology, 2015, 117, 18-25.	7.8	18
24	Insert injection molding of polypropylene single-polymer composites. Composites Science and Technology, 2015, 106, 47-54.	7.8	18
25	Study on Injection Molding of Single Polymer Composites. Advanced Materials Research, 2014, 1052, 482-488.	0.3	1
26	Polyethylene naphthalate single-polymer-composites produced by the undercooling melt film stacking method. Composites Science and Technology, 2014, 91, 50-54.	7.8	19
27	A Novel Process Control Methodology Based on the PVT Behavior of Polymer for Injection Molding. Advances in Polymer Technology, 2013, 32, .	1.7	76
28	Comparisons of microcellular polylactic acid parts injection molded with supercritical nitrogen and expandable thermoplastic microspheres: Surface roughness, tensile properties, and morphology. Journal of Cellular Plastics, 2013, 49, 33-45.	2.4	11
29	Preparation of polypropylene singleâ€polymer composites by injection molding. Journal of Applied Polymer Science, 2013, 130, 2176-2183.	2.6	24
30	Comparisons of microcellular polylactic acid parts injection molded with supercritical nitrogen and expandable thermoplastic microspheres: Surface roughness, tensile properties, and morphology. Journal of Cellular Plastics, 2012, 48, 433-444.	2.4	7
31	Design of a Multi Microinjection Molding Module for Thermoplastic Polymer. Key Engineering Materials, 2012, 501, 162-167.	0.4	1
32	Development of a multimicroinjection molding system for thermoplastic polymer. Polymer Engineering and Science, 2012, 52, 2237-2244.	3.1	1
33	Filling-To-Packing Switchover Mode Based on Cavity Temperature for Injection Molding. Polymer-Plastics Technology and Engineering, 2011, 50, 1273-1280.	1.9	8
34	Online pressure–volume–temperature measurements of polypropylene using a testing mold to simulate the injectionâ€molding process. Journal of Applied Polymer Science, 2010, 118, 200-208.	2.6	35
35	On-Line PVT Properties of Amorphous Polymers. Advanced Materials Research, 2009, 87-88, 216-221.	0.3	2
36	Study on the End-Point Control of Holding Phase during Injection Molding. Advanced Materials Research, 2009, 87-88, 222-227.	0.3	2

JIAN WANG

#	Article	IF	CITATIONS
37	On-line testing equipment of P–V–T properties of polymers based on an injection molding machine. Polymer Testing, 2009, 28, 228-234.	4.8	26
38	End-Point Control of Holding Phase Based on Cavity Pressure for Injection Molding. Advanced Materials Research, 0, 221, 333-337.	0.3	0
39	Numerical Simulation of Shrinkage in the Microinjection Molding of Multi-Microparts Produced in one Mold. Advanced Materials Research, 0, 221, 649-656.	0.3	1
40	Filling-to-Packing Switchover Mode Based on Cavity Pressure for Injection Molding. Key Engineering Materials, 0, 501, 168-173.	0.4	1
41	PVT Properties of Polymers for Injection Molding. , 0, , .		29
42	Influence of Helical Grooved Structure on Mixing Process in a Single Screw Extruder. Key Engineering Materials, 0, 561, 212-217.	0.4	2