Robert Deans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10467210/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Augmented Expansion of Treg Cells From Healthy and Autoimmune Subjects via Adult Progenitor Cell Co-Culture. Frontiers in Immunology, 2021, 12, 716606.	2.2	6
2	Human Multipotent Adult Progenitor Cells Effectively Reduce Graft-vs-Host Disease While Preserving Graft-Vs-Leukemia Activity. Stem Cells, 2021, 39, 1506-1519.	1.4	4
3	Crosstalk with Inflammatory Macrophages Shapes the Regulatory Properties of Multipotent Adult Progenitor Cells. Stem Cells International, 2017, 2017, 1-16.	1.2	4
4	Manufacturing Cells for Clinical Use. Stem Cells International, 2016, 2016, 1-5.	1.2	8
5	Multipotent adult progenitor cells on an allograft scaffold facilitate the bone repair process. Journal of Tissue Engineering, 2016, 7, 204173141665614.	2.3	20
6	Adult adherent cell therapy for ischemic stroke: clinical results and development experience using MultiStem. Transfusion, 2016, 56, 6S-8S.	0.8	14
7	Multipotent adult progenitor cells for hypoxic-ischemic injury in the preterm brain. Journal of Neuroinflammation, 2015, 12, 241.	3.1	29
8	Neuroinflammatory signals enhance the immunomodulatory and neuroprotective properties of multipotent adult progenitor cells. Stem Cell Research and Therapy, 2015, 6, 176.	2.4	19
9	Towards the creation of a standard MSC line as a calibration tool. Cytotherapy, 2015, 17, 1167-1168.	0.3	12
10	Suppression of IL-7-dependent Effector T-cell Expansion by Multipotent Adult Progenitor Cells and PGE2. Molecular Therapy, 2015, 23, 1783-1793.	3.7	40
11	Culturing Protocols for Human Multipotent Adult Stem Cells. Methods in Molecular Biology, 2015, 1235, 49-58.	0.4	8
12	Multipotent adult progenitor cells decrease cold ischemic injury in ex vivo perfused human lungs: an initial pilot and feasibility study. Transplantation Research, 2014, 3, 19.	1.5	52
13	Soliciting Strategies for Developing Cell-Based Reference Materials to Advance Mesenchymal Stromal Cell Research and Clinical Translation. Stem Cells and Development, 2014, 23, 1157-1167.	1.1	112
14	Harmonizing standards for producing clinical-grade therapies from pluripotent stem cells. Nature Biotechnology, 2014, 32, 724-726.	9.4	62
15	Human adult bone marrow-derived stem cells decrease severity of lipopolysaccharide-induced acute respiratory distress syndrome in sheep. Stem Cell Research and Therapy, 2014, 5, 42.	2.4	40
16	Heart Grafts Tolerized Through Third-Party Multipotent Adult Progenitor Cells Can Be Retransplanted to Secondary Hosts With No Immunosuppression. Stem Cells Translational Medicine, 2013, 2, 595-606.	1.6	50
17	Clinical-Grade Multipotent Adult Progenitor Cells Durably Control Pathogenic T Cell Responses in Human Models of Transplantation and Autoimmunity. Journal of Immunology, 2013, 190, 4542-4552.	0.4	72
18	Human Multipotent Adult Progenitor Cells Are Nonimmunogenic and Exert Potent Immunomodulatory Effects on Alloreactive T-Cell Responses. Cell Transplantation, 2013, 22, 1915-1928.	1.2	83

ROBERT DEANS

#	Article	IF	CITATIONS
19	Regulation, manufacturing and building industry consensus. Regenerative Medicine, 2012, 7, 78-81.	0.8	7
20	Application of MultiStem® Allogeneic Cells for Immunomodulatory Therapy: Clinical Progress and Pre-Clinical Challenges in Prophylaxis for Graft Versus Host Disease. Frontiers in Immunology, 2012, 3, 345.	2.2	66
21	Percutaneous Adventitial Delivery of Allogeneic Bone Marrow-Derived Stem Cells via Infarct-Related Artery Improves Long-Term Ventricular Function in Acute Myocardial Infarction. Cell Transplantation, 2012, 21, 1109-1120.	1.2	45
22	Development of a surrogate angiogenic potency assay for clinical-grade stem cell production. Cytotherapy, 2012, 14, 994-1004.	0.3	70
23	Commercialization of trials for peripheral artery disease. Cytotherapy, 2011, 13, 1157-1161.	0.3	3
24	Safety and feasibility of third-party multipotent adult progenitor cells for immunomodulation therapy after liver transplantationa phase I study (MISOT-I). Journal of Translational Medicine, 2011, 9, 124.	1.8	51
25	Advancement of Mesenchymal Stem Cell Therapy in Solid Organ Transplantation (MISOT). Transplantation, 2010, 90, 124-126.	0.5	66
26	Intravenous multipotent adult progenitor cell therapy for traumatic brain injury: Preserving the blood brain barrier via an interaction with splenocytes. Experimental Neurology, 2010, 225, 341-352.	2.0	133
27	Clinical scale expanded adult pluripotent stem cells prevent graft-versus-host disease. Cellular Immunology, 2009, 255, 55-60.	1.4	53
28	Toward MSC in Solid Organ Transplantation: 2008 Position Paper of the MISOT Study Group. Transplantation, 2009, 88, 614-619.	0.5	64
29	Global Characterization and Genomic Stability of Human MultiStem, A Multipotent Adult Progenitor Cell. Journal of Stem Cells, 2009, 4, 17-28.	1.0	57
30	Therapeutic pathways of adult stem cell repair. Critical Reviews in Oncology/Hematology, 2008, 65, 81-93.	2.0	42
31	Bioenergetic and Functional Consequences of Bone Marrow–Derived Multipotent Progenitor Cell Transplantation in Hearts With Postinfarction Left Ventricular Remodeling. Circulation, 2007, 115, 1866-1875.	1.6	248
32	Development of adult pluripotent stem cell therapies for ischemic injury and disease. Expert Opinion on Biological Therapy, 2007, 7, 173-184.	1.4	50
33	Cellular Therapy for Myocardial Repair. Current Cardiology Reviews, 2007, 3, 121-135.	0.6	1
34	Multipotent Adult Progenitor Cells. , 2007, , 45-56.		7
35	Transplantation of Cryopreserved Human Bone Marrowderived Multipotent Adult Progenitor Cells for Neonatal Hypoxie- Ischemic Injury: Targeting the Hippocampus. Reviews in the Neurosciences, 2006, 17, 215-25.	1.4	30
36	Clinical Scale Expansion of Human Pluripotent Stem Cells Blood, 2005, 106, 1060-1060.	0.6	3

ROBERT DEANS

#	Article	IF	CITATIONS
37	Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology, 2002, 30, 42-48.	0.2	2,084
38	Baboon Mesenchymal Stem Cells Can Be Genetically Modified to Secrete Human ErythropoietinIn Vivo. Human Gene Therapy, 2001, 12, 1527-1541.	1.4	157
39	Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Experimental Hematology, 2001, 29, 244-255.	0.2	393
40	Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nature Medicine, 2000, 6, 1282-1286.	15.2	1,161
41	Additional Restriction Endonuclease Cleavage Sites on the Bacteriophage P22 Genome. Journal of Virology, 1983, 45, 864-867.	1.5	29
42	Bringing Mesenchymal Stem Cells into the Clinic. , 0, , 463-481.		0