Zakir Hussain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10466348/publications.pdf

Version: 2024-02-01

567247 501174 27 854 15 28 h-index citations g-index papers 28 28 28 458 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of homogeneous and heterogeneous reactions in flow of nanofluids over a nonlinear stretching surface with variable surface thickness. Journal of Molecular Liquids, 2016, 221, 1121-1127.	4.9	143
2	Carbon nanotubes effects in the stagnation point flow towards a nonlinear stretching sheet with variable thickness. Advanced Powder Technology, 2016, 27, 1677-1688.	4.1	84
3	Effects of homogeneous and heterogeneous reactions and melting heat in the viscoelastic fluid flow. Journal of Molecular Liquids, 2016, 215, 749-755.	4.9	63
4	Heterogeneous-homogeneous reactions and melting heat transfer effects in flow with carbon nanotubes. Journal of Molecular Liquids, 2016, 220, 200-207.	4.9	59
5	Thermally Stratified Stagnation Point Flow of an Oldroyd-B Fluid. International Journal of Nonlinear Sciences and Numerical Simulation, 2014, 15, 77-86.	1.0	51
6	Three-dimensional convective flow of CNTs nanofluids with heat generation/absorption effect: A numerical study. Computer Methods in Applied Mechanics and Engineering, 2018, 329, 40-54.	6.6	47
7	Nanofluid flow through a porous space with convective conditions and heterogeneous–homogeneous reactions. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 119-126.	5.3	42
8	Magnetohydrodynamic Flow by a Stretching Cylinder with Newtonian Heating and Homogeneous-Heterogeneous Reactions. PLoS ONE, 2016, 11, e0156955.	2.5	39
9	Numerical study for slip flow of carbon–water nanofluids. Computer Methods in Applied Mechanics and Engineering, 2017, 319, 366-378.	6.6	33
10	Entropy analysis in mixed convective flow of hybrid nanofluid subject to melting heat and chemical reactions. Case Studies in Thermal Engineering, 2022, 34, 101972.	5.7	31
11	Analysis of Cattaneo–Christov heat flux in Jeffery fluid flow with heat source over a stretching cylinder. Journal of Thermal Analysis and Calorimetry, 2022, 147, 3391-3402.	3.6	23
12	Darcy Forhheimer aspects for CNTs nanofluid past a stretching cylinder; using Keller box method. Results in Physics, 2018, 11, 801-816.	4.1	22
13	On MHD convective flow of Williamson fluid with homogeneous-heterogeneous reactions: A comparative study of sheet and cylinder. International Communications in Heat and Mass Transfer, 2021, 120, 105060.	5.6	21
14	Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition. Results in Physics, 2017, 7, 2497-2505.	4.1	20
15	Base fluids with CNTs as nanoparticles through non-Darcy porous medium in convectively heated flow: A comparative study. Advanced Powder Technology, 2017, 28, 1855-1865.	4.1	19
16	Influence of heterogeneous-homogeneous reactions in thermally stratified stagnation point flow of an Oldroyd-B fluid. Results in Physics, 2016, 6, 1161-1167.	4.1	18
17	Mixed convective flow of CNTs nanofluid subject to varying viscosity and reactions. Scientific Reports, 2021, 11, 22838.	3.3	18
18	Simultaneous Influence of Hall and Wall Characteristics in Peristaltic Convective Carbon–Water Flow Subject to Soret and Dufour Effects. Arabian Journal for Science and Engineering, 2021, 46, 2033-2046.	3.0	17

#	Article	IF	CITATIONS
19	Magnetohydrodynamic flow of Powell-Eyring fluid by a stretching cylinder with Newtonian heating. Thermal Science, 2018, 22, 371-382.	1.1	17
20	Effects of first-order chemical reaction and melting heat on hybrid nanoliquid flow over a nonlinear stretched curved surface with shape factors. Advances in Mechanical Engineering, 2021, 13, 168781402199952.	1.6	16
21	Passive control of magneto-nanomaterials transient flow subject to non-linear thermal radiation. Thermal Science, 2022, 26, 1405-1419.	1.1	14
22	Heat Transfer in a Fractional Nanofluid Flow through a Permeable Medium. Mathematical Problems in Engineering, 2022, 2022, 1-18.	1.1	14
23	An optimal solution for magnetohydrodynamic nanofluid flow over a stretching surface with constant heat flux and zero nanoparticles flux. Neural Computing and Applications, 2018, 29, 1555-1562.	5.6	12
24	Heat transfer through temperature dependent viscosity hybrid nanofluid subject to homogeneous-heterogeneous reactions and melting condition: A comparative study. Physica Scripta, 2021, 96, 015210.	2.5	11
25	Outcomes of double stratification in Darcy–Forchheimer MHD flow of viscoelastic nanofluid. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	1.6	9
26	Computational analysis for velocity slip and diffusion species with carbon nanotubes. Results in Physics, 2017, 7, 3049-3058.	4.1	6
27	Darcy Forchheimer flow of Jeffrey nanofluid with heat generation/absorption and melting heat transfer. Thermal Science, 2019, 23, 3833-3842.	1.1	4