Antonio Bonomi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10466139/publications.pdf

Version: 2024-02-01

66 papers 3,890 citations

35 h-index 61 g-index

70 all docs

70 docs citations

times ranked

70

3473 citing authors

#	Article	IF	Citations
1	Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives. Renewable and Sustainable Energy Reviews, 2015, 44, 888-903.	16.4	319
2	Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresource Technology, 2012, 103, 152-161.	9.6	294
3	Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?. Applied Energy, 2014, 113, 825-835.	10.1	238
4	Second generation ethanol in Brazil: Can it compete with electricity production?. Bioresource Technology, 2011, 102, 8964-8971.	9.6	188
5	Sugarcane processing for ethanol and sugar in Brazil. Environmental Development, 2015, 15, 35-51.	4.1	177
6	Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. International Journal of Life Cycle Assessment, 2013, 18, 647-658.	4.7	147
7	Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Applied Energy, 2013, 109, 72-78.	10.1	144
8	Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Technologies and Environmental Policy, 2012, 14, 399-410.	4.1	136
9	Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Applied Energy, 2018, 209, 290-305.	10.1	120
10	Techno-economic analysis and climate change impacts of sugarcane biorefineries considering different time horizons. Biotechnology for Biofuels, 2017, 10, 50.	6.2	113
11	Butanol production in a first-generation Brazilian sugarcane biorefinery: Technical aspects and economics of greenfield projects. Bioresource Technology, 2013, 135, 316-323.	9.6	111
12	Life cycle assessment of butanol production in sugarcane biorefineries in Brazil. Journal of Cleaner Production, 2015, 96, 557-568.	9.3	99
13	Integration of microalgae production with industrial biofuel facilities: A critical review. Renewable and Sustainable Energy Reviews, 2018, 82, 1376-1392.	16.4	99
14	Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 955-966.	3.0	89
15	Improving second generation ethanol production through optimization of first generation production process from sugarcane. Energy, 2012, 43, 246-252.	8.8	87
16	Trends in global warming and human health impacts related to Brazilian sugarcane ethanol production considering black carbon emissions. Applied Energy, 2013, 104, 576-582.	10.1	85
17	Cogeneration in integrated first and second generation ethanol from sugarcane. Chemical Engineering Research and Design, 2013, 91, 1411-1417.	5.6	81
18	Utilization of pentoses from sugarcane biomass: Techno-economics of biogas vs. butanol production. Bioresource Technology, 2013, 142, 390-399.	9.6	81

#	Article	IF	CITATIONS
19	Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): A case study for sugarcane mills and integrated sugarcane-microalgae biorefineries. Renewable and Sustainable Energy Reviews, 2019, 115, 109365.	16.4	80
20	Evaluation of process configurations for second generation integrated with first generation bioethanol production from sugarcane. Fuel Processing Technology, 2013, 109, 84-89.	7.2	76
21	Diversifying the technological strategies for recovering bioenergy from the two-phase anaerobic digestion of sugarcane vinasse: An integrated techno-economic and environmental approach. Renewable Energy, 2018, 122, 674-687.	8.9	70
22	Technoâ€economic assessment of biorefinery technologies for aviation biofuels supply chains in Brazil. Biofuels, Bioproducts and Biorefining, 2017, 11, 67-91.	3.7	68
23	Process development and technoâ€economic analysis of bioâ€based succinic acid derived from pentoses integrated to a sugarcane biorefinery. Biofuels, Bioproducts and Biorefining, 2017, 11, 1051-1064.	3.7	57
24	Environmental and economic impacts of different sugarcane production systems in the ethanol biorefinery. Biofuels, Bioproducts and Biorefining, 2016, 10, 89-106.	3.7	55
25	Technical and economic assessment of trash recovery in the sugarcane bioenergy production system. Scientia Agricola, 2013, 70, 353-360.	1.2	53
26	Economic, environmental, and social impacts of different sugarcane production systems. Biofuels, Bioproducts and Biorefining, 2018, 12, 68-82.	3.7	53
27	Social life cycle assessment of first and second-generation ethanol production technologies in Brazil. International Journal of Life Cycle Assessment, 2018, 23, 617-628.	4.7	52
28	Beyond ethanol, sugar, and electricity: a critical review of product diversification in Brazilian sugarcane mills. Biofuels, Bioproducts and Biorefining, 2019, 13, 809-821.	3.7	50
29	Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions. Biochemical Engineering Journal, 2017, 119, 42-51.	3.6	47
30	Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries. Energies, 2020, 13, 4576.	3.1	42
31	A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production. Renewable and Sustainable Energy Reviews, 2020, 119, 109607.	16.4	41
32	Techno-economic assessment of bioenergy and biofuel production in integrated sugarcane biorefinery: Identification of technological bottlenecks and economic feasibility of dilute acid pretreatment. Energy, 2020, 199, 117422.	8.8	41
33	Sugarcane as a carbon source: The Brazilian case. Biomass and Bioenergy, 2012, 46, 5-12.	5.7	38
34	Butanol production in a sugarcane biorefinery using ethanol as feedstock. Part I: Integration to a first generation sugarcane distillery. Chemical Engineering Research and Design, 2014, 92, 1441-1451.	5.6	38
35	The Virtual Sugarcane Biorefinery—A Simulation Tool to Support Public Policies Formulation in Bioenergy. Industrial Biotechnology, 2016, 12, 62-67.	0.8	38
36	Electricity Production from Sugarcane Straw Recovered Through Bale System: Assessment of Retrofit Projects. Bioenergy Research, 2019, 12, 865-877.	3.9	38

#	Article	IF	CITATIONS
37	Process simulation of renewable electricity from sugarcane straw: Techno-economic assessment of retrofit scenarios in Brazil. Journal of Cleaner Production, 2020, 254, 120081.	9.3	38
38	Adsorption characteristics of cellulase and $\hat{l}^2\hat{a}\in g$ lucosidase on Avicel, pretreated sugarcane bagasse, and lignin. Biotechnology and Applied Biochemistry, 2015, 62, 681-689.	3.1	30
39	Butanol production in a sugarcane biorefinery using ethanol as feedstock. Part II: Integration to a second generation sugarcane distillery. Chemical Engineering Research and Design, 2014, 92, 1452-1462.	5.6	29
40	Hybrid Inputâ€Output Life Cycle Assessment of First―and Secondâ€Generation Ethanol Production Technologies in Brazil. Journal of Industrial Ecology, 2016, 20, 764-774.	5.5	24
41	Protozoan feeding and bacterial wall growth. Biotechnology and Bioengineering, 1976, 18, 239-252.	3.3	22
42	Environmental impacts of technology learning curve for cellulosic ethanol in Brazil. Industrial Crops and Products, 2017, 106, 31-39.	5.2	22
43	Techno-Economic Assessment and Critical Properties Tuning of Activated Carbons from Pyrolyzed Sugarcane Bagasse. Waste and Biomass Valorization, 2020, 11, 1-13.	3.4	18
44	Implications of regional N2O–N emission factors on sugarcane ethanol emissions and granted decarbonization certificates. Renewable and Sustainable Energy Reviews, 2021, 149, 111423.	16.4	16
45	Study of influence of yeast cells treatment on sugarcane ethanol fermentation: Operating conditions and kinetics. Biochemical Engineering Journal, 2019, 147, 1-10.	3.6	15
46	Investigation of uncertainties associated with the production of n-butanol through ethanol catalysis in sugarcane biorefineries. Bioresource Technology, 2015, 190, 242-250.	9.6	13
47	Use of the VSB to Assess Biorefinery Strategies. Green Energy and Technology, 2016, , 189-256.	0.6	12
48	Advanced technologies for electricity production in the sugarcane value chain are a strategic option in a carbon reward policy context. Energy Policy, 2021, 159, 112637.	8.8	12
49	Economic and environmental assessment of integrated 1st and 2nd generation sugarcane bioethanol production evaluating different 2nd generation process alternatives. Computer Aided Chemical Engineering, 2012, 30, 177-181.	0.5	10
50	Sustainability analysis of bioethanol production in Mexico by a retrofitted sugarcane industry based on the Brazilian expertise. Energy, 2021, 232, 121056.	8.8	10
51	Multiobjective optimization of economic and environmental performance of Fischer-Tropsch biofuels production integrated to sugarcane biorefineries. Industrial Crops and Products, 2021, 170, 113810.	5.2	10
52	Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels. Sustainability, 2021, 13, 10371.	3.2	8
53	Bottlenecks and potentials for the gasification of lignocellulosic biomasses and Fischer-Tropsch synthesis: A case study on the production of advanced liquid biofuels in Brazil. Energy Conversion and Management, 2021, 245, 114629.	9.2	8
54	Sustainability Assessment Methodologies. Green Energy and Technology, 2016, , 155-188.	0.6	7

#	Article	IF	CITATIONS
55	A novel social life cycle assessment method for determining workers' human development: a case study of the sugarcane biorefineries in Brazil. International Journal of Life Cycle Assessment, 2021, 26, 2072-2084.	4.7	7
56	The effects of integrated food and bioenergy cropping systems on crop yields, soil health, and biomass quality: The EU and Brazilian experience. GCB Bioenergy, 2022, 14, 522-538.	5.6	6
57	The Agricultural Production Model. Green Energy and Technology, 2016, , 13-51.	0.6	5
58	Use of VSB to Plan Research Programs and Public Policies. Green Energy and Technology, 2016 , , $257-282$.	0.6	4
59	Techno-Economic Analysis of Second-Generation Ethanol in Brazil: Competitive, Complementary Aspects with First-Generation Ethanol., 2014,, 1-29.		3
60	Expansion assessment of the sugarcane and ethanol production in the Llanos Orientales region in Colombia. Biofuels, Bioproducts and Biorefining, 2018, 12, 857-872.	3.7	3
61	Future Perspectives of Sugarcane Biofuels. , 2019, , 445-460.		3
62	Techno-economic assessment of HTL integration to the Brazilian sugarcane industry: An evaluation of different scenarios. Industrial Crops and Products, 2021, 173, 114139.	5.2	3
63	Biorefinery Alternatives. Green Energy and Technology, 2016, , 53-132.	0.6	2
64	Sugar extraction by moving-bed diffusers in ethanol production: development of a simulation tool. Computer Aided Chemical Engineering, 2016, 38, 1425-1430.	0.5	1
65	Sugar Extraction via Moving-Bed Diffusers in Ethanol Production Industry: Phenomenological Modeling and Finite-Volumes Simulation. Industrial & Engineering Chemistry Research, 2018, 57, 13769-13782.	3.7	1
66	Simulating scenarios for compost and vinasse use to improve the economics and environmental aspects of representative Colombian sugarcane production systems. Renewable Agriculture and Food Systems, 2020, 35, 579-593.	1.8	1