Chunnian He

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/10466096/chunnian-he-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

102
papers6,225
citations40
h-index78
g-index104
ext. papers7,092
ext. citations9
avg, IF6.06
L-index

#	Paper	IF	Citations
102	Exceptional mechanical properties of aluminum matrix composites with heterogeneous structure induced by in-situ graphene nanosheet-Cu hybrids. <i>Composites Part B: Engineering</i> , 2022 , 234, 109731	10	3
101	Bismuth-antimony alloy nanoparticles encapsulated in 3D carbon framework: Synergistic effect for enhancing interfacial potassium storage. <i>Chemical Engineering Journal</i> , 2022 , 430, 132906	14.7	1
100	Simultaneously optimizing pore morphology and enhancing mechanical properties of Al-Si alloy composite foams by graphene nanosheets. <i>Journal of Materials Science and Technology</i> , 2022 , 101, 60-7	09.1	1
99	Two Birds with One Stone: A NaCl-Assisted Strategy toward MoTe2 Nanosheets Nanoconfined in 3D Porous Carbon Network for Sodium-Ion Battery Anode. <i>Energy Storage Materials</i> , 2022 , 47, 591-601	19.4	1
98	NaCl-pinned antimony nanoparticles combined with ion-shuttle-induced graphitized 3D carbon to boost sodium storage. <i>Cell Reports Physical Science</i> , 2022 , 100891	6.1	
97	Ultrafine Fe3N nanocrystals coupled with N doped 3D porous carbon networks induced atomically dispersed Fe for superior sodium ion storage. <i>Carbon</i> , 2022 , 196, 795-806	10.4	О
96	Data-driven design and controllable synthesis of Pt/carbon electrocatalysts for H evolution <i>IScience</i> , 2021 , 24, 103430	6.1	O
95	Graphite Carbon Nanosheet-Coated Cobalt-Doped Molybdenum Carbide Nanoparticles for Efficient Alkaline Hydrogen Evolution Reaction. <i>ACS Applied Nano Materials</i> , 2021 , 4, 372-380	5.6	5
94	Copper-Coated Graphene Nanoplatelets-Reinforced AlBi Alloy Matrix Composites Fabricated by Stir Casting Method. <i>Acta Metallurgica Sinica (English Letters)</i> , 2021 , 34, 111-124	2.5	6
93	Heterostructure Engineering of Core-Shelled Sb@Sb O Encapsulated in 3D N-Doped Carbon Hollow-Spheres for Superior Sodium/Potassium Storage. <i>Small</i> , 2021 , 17, e2006824	11	23
92	Bi-functional modular graphene network with high rate and cycling performance. <i>Journal of Power Sources</i> , 2021 , 504, 230075	8.9	2
91	Octopus-Inspired Design of Apical NiS Nanoparticles Supported on Hierarchical Carbon Composites as an Efficient Host for Lithium Sulfur Batteries with High Sulfur Loading. <i>ACS Applied Materials & ACS Applied Materials</i>	9.5	4
90	Spatially uniform Li deposition realized by 3D continuous duct-like graphene host for high energy density Li metal anode. <i>Carbon</i> , 2020 , 161, 198-205	10.4	16
89	The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design [A review. <i>Progress in Materials Science</i> , 2020 , 113, 100672	42.2	83
88	Compression-compression fatigue performance of aluminium matrix composite foams reinforced by carbon nanotubes. <i>Fatigue and Fracture of Engineering Materials and Structures</i> , 2020 , 43, 744-756	3	6
87	Synergistic strengthening effect of in-situ synthesized WC1-x nanoparticles and graphene nanosheets in copper matrix composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2020 , 133, 105891	8.4	18
86	Strongly coupled hollow-oxide/phosphide hybrid coated with nitrogen-doped carbon as highly efficient electrocatalysts in alkaline for hydrogen evolution reaction. <i>Journal of Catalysis</i> , 2019 , 377, 582-588	7.3	25

(2018-2019)

85	Yolk-shelled Sb@C nanoconfined nitrogen/sulfur co-doped 3D porous carbon microspheres for sodium-ion battery anode with ultralong high-rate cycling. <i>Nano Energy</i> , 2019 , 66, 104133	17.1	41
84	A hybrid energy storage mechanism of carbonous anodes harvesting superior rate capability and long cycle life for sodium/potassium storage. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3673-3681	13	55
83	Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: A study of synergistic adsorption-electrocatalysis function. <i>Nano Energy</i> , 2019 , 60, 332-339	17.1	102
82	Monodisperse multicore-shell SnSb@SnOx/SbOx@C nanoparticles space-confined in 3D porous carbon networks as high-performance anode for Li-ion and Na-ion batteries. <i>Chemical Engineering Journal</i> , 2019 , 371, 356-365	14.7	38
81	ZnO nanoconfined 3D porous carbon composite microspheres to stabilize lithium nucleation/growth for high-performance lithium metal anodes. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19442-19452	13	25
80	Compressive responses and strengthening mechanisms of aluminum composite foams reinforced with graphene nanosheets. <i>Carbon</i> , 2019 , 153, 396-406	10.4	7
79	Hard-template synthesis of three-dimensional interconnected carbon networks: Rational design, hybridization and energy-related applications. <i>Nano Today</i> , 2019 , 29, 100796	17.9	26
78	An in-plane CoS@MoS heterostructure for the hydrogen evolution reaction in alkaline media. <i>Nanoscale</i> , 2019 , 11, 21479-21486	7.7	20
77	In situ synthesis of copper-modified graphene-reinforced aluminum nanocomposites with balanced strength and ductility. <i>Journal of Materials Science</i> , 2019 , 54, 5498-5512	4.3	33
76	Synthesis of interconnected carbon nanosheets anchored with Fe3O4 nanoparticles as broadband electromagnetic wave absorber. <i>Chemical Physics Letters</i> , 2019 , 716, 221-226	2.5	8
75	Bio-inspired three-dimensional carbon network with enhanced mass-transfer ability for supercapacitors. <i>Carbon</i> , 2019 , 143, 728-735	10.4	20
74	Synthesis of three-dimensional carbon networks decorated with Fe3O4 nanoparticles as lightweight and broadband electromagnetic wave absorber. <i>Journal of Alloys and Compounds</i> , 2019 , 776, 691-701	5.7	26
73	Effectively reinforced load transfer and fracture elongation by forming Al4C3 for in-situ synthesizing carbon nanotube reinforced Al matrix composites. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2018 , 718, 182-189	5.3	33
72	A Top-Down Strategy toward SnSb In-Plane Nanoconfined 3D N-Doped Porous Graphene Composite Microspheres for High Performance Na-Ion Battery Anode. <i>Advanced Materials</i> , 2018 , 30, 1704670	24	147
71	Salt-assisted synthesis of 3D open porous g-CN decorated with cyano groups for photocatalytic hydrogen evolution. <i>Nanoscale</i> , 2018 , 10, 3008-3013	7.7	68
70	Facile synthesis and electrochemical properties of continuous porous spheres assembled from defect-rich, interlayer-expanded, and few-layered MoS2/C nanosheets for reversible lithium storage. <i>Journal of Power Sources</i> , 2018 , 387, 16-23	8.9	43
69	In-situ synthesis of graphene nanosheets coated copper for preparing reinforced aluminum matrix composites. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2018 , 709, 65-71	5.3	37
68	In-situ space-confined catalysis for fabricating 3D mesoporous graphene and their capacitive properties. <i>Applied Surface Science</i> , 2018 , 433, 568-574	6.7	12

67	High strain rate dynamic compressive properties and deformation behavior of Al matrix composite foams reinforced by in-situ grown carbon nanotubes. <i>Materials Science & Dineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2018 , 729, 487-495	5.3	17
66	Fabrication of Sn-core/CNT-shell nanocable anchored interconnected carbon networks as anode material for lithium ion batteries. <i>Materials Letters</i> , 2018 , 212, 94-97	3.3	12
65	Ultrasmall Fe2GeO4 nanodots anchored on interconnected carbon nanosheets as high-performance anode materials for lithium and sodium ion batteries. <i>Applied Surface Science</i> , 2018 , 427, 670-679	6.7	31
64	Three-dimensionally hierarchical Co3O4/Carbon composites with high pseudocapacitance contribution for enhancing lithium storage. <i>Electrochimica Acta</i> , 2018 , 283, 1269-1276	6.7	29
63	Preparation and mechanical properties of in-situ synthesized nano-MgAl2O4 particles and MgxAl(1-x)B2 whiskers co-reinforced Al matrix composites. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2018 , 735, 236-242	5.3	10
62	In-situ grown CNTs modified SiO2/C composites as anode with improved cycling stability and rate capability for lithium storage. <i>Applied Surface Science</i> , 2018 , 433, 428-436	6.7	30
61	1D Sub-Nanotubes with Anatase/Bronze TiO Nanocrystal Wall for High-Rate and Long-Life Sodium-Ion Batteries. <i>Advanced Materials</i> , 2018 , 30, e1804116	24	85
60	Effect of Interface Structure on the Mechanical Properties of Graphene Nanosheets Reinforced Copper Matrix Composites. <i>ACS Applied Materials & District Materials</i> , 10, 37586-37601	9.5	56
59	Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: Towards high-performance lithium-ion batteries anode materials. <i>Nano Energy</i> , 2017 , 33, 247-256	17.1	114
58	Ultrathin-Nanosheet-Induced Synthesis of 3D Transition Metal Oxides Networks for Lithium Ion Battery Anodes. <i>Advanced Functional Materials</i> , 2017 , 27, 1605017	15.6	249
57	Multi-functional integration of pore P25@C@MoS2 core-double shell nanostructures as robust ternary anodes with enhanced lithium storage properties. <i>Applied Surface Science</i> , 2017 , 401, 232-240	6.7	22
56	Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2017 , 690, 294-302	5.3	34
55	Ball-in-cage nanocomposites of metal-organic frameworks and three-dimensional carbon networks: synthesis and capacitive performance. <i>Nanoscale</i> , 2017 , 9, 6478-6485	7.7	32
54	Sandwiched C@SnO2@C hollow nanostructures as an ultralong-lifespan high-rate anode material for lithium-ion and sodium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10946-10956	13	88
53	In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2017 , 699, 185-193	5.3	76
52	Smart hybridization of Sn2Nb2O7/SnO2@3D carbon nanocomposites with enhanced sodium storage performance through self-buffering effects. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13052-13	3061	21
51	Three-dimensional graphene anchored Fe2O3@C core-shell nanoparticles as supercapacitor electrodes. <i>Journal of Alloys and Compounds</i> , 2017 , 696, 956-963	5.7	31
50	One-step synthesis of SnCo nanoconfined in hierarchical carbon nanostructures for lithium ion battery anode. <i>Nanoscale</i> , 2017 , 9, 15856-15864	7.7	27

(2016-2017)

49	Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries. <i>Nano Energy</i> , 2017 , 41, 154-163	17.1	160
48	Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network. <i>Nanoscale</i> , 2017 , 9, 11929-11938	7.7	85
47	Damping characteristics of Al matrix composite foams reinforced by in-situ grown carbon nanotubes. <i>Materials Letters</i> , 2017 , 209, 68-70	3.3	21
46	Compressive Response and Energy Absorption Characteristics of In Situ Grown CNT-Reinforced Al Composite Foams. <i>Advanced Engineering Materials</i> , 2017 , 19, 1700431	3.5	1
45	Three-dimensional porous bowl-shaped carbon cages interspersed with carbon coated NiBn alloy nanoparticles as anode materials for high-performance lithium-ion batteries. <i>New Journal of Chemistry</i> , 2017 , 41, 393-402	3.6	25
44	MetalBrganic frameworks-derived honeycomb-like Co3O4/three-dimensional graphene networks/Ni foam hybrid as a binder-free electrode for supercapacitors. <i>Journal of Alloys and Compounds</i> , 2017 , 693, 16-24	5.7	96
43	Space-Confined Synthesis of Three-Dimensional Boron/Nitrogen-Doped Carbon Nanotubes/Carbon Nanosheets Line-in-Wall Hybrids and Their Electrochemical Energy Storage Applications. <i>Electrochimica Acta</i> , 2016 , 212, 621-629	6.7	33
42	Synthesis of SiO2/3D porous carbon composite as anode material with enhanced lithium storage performance. <i>Chemical Physics Letters</i> , 2016 , 651, 19-23	2.5	32
41	2D sandwich-like carbon-coated ultrathin TiO2@defect-rich MoS2 hybrid nanosheets: Synergistic-effect-promoted electrochemical performance for lithium ion batteries. <i>Nano Energy</i> , 2016 , 26, 541-549	17.1	129
40	Self-anchored catalysts for substrate-free synthesis of metal-encapsulated carbon nano-onions and study of their magnetic properties. <i>Nano Research</i> , 2016 , 9, 1159-1172	10	9
39	Hierarchically structured carbon-coated SnO2-Fe3O4 microparticles with enhanced lithium storage performance. <i>Applied Surface Science</i> , 2016 , 361, 1-10	6.7	21
38	Interfacial effect on the electrochemical properties of the layered graphene/metal sulfide composites as anode materials for Li-ion batteries. <i>Surface Science</i> , 2016 , 651, 10-15	1.8	23
37	Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2016 , 660, 11-18	5.3	94
36	Graphene Oxide-Assisted Synthesis of Microsized Ultrathin Single-Crystalline Anatase TiO2 Nanosheets and Their Application in Dye-Sensitized Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 2495-504	9.5	37
35	Preparation of Fe 3 O 4 /rebar graphene composite via solvothermal route as binder free anode for lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2016 , 661, 448-454	5.7	22
34	Three-Dimensional Network of N-Doped Carbon Ultrathin Nanosheets with Closely Packed Mesopores: Controllable Synthesis and Application in Electrochemical Energy Storage. <i>ACS Applied Materials & Mat</i>	9.5	79
33	Salt-template-assisted synthesis of robust 3D honeycomb-like structured MoS2 and its application as a lithium-ion battery anode. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8734-8741	13	85
32	Three-dimensional core-shell Fe2O3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries. <i>Applied Surface Science</i> , 2016 , 390, 350-356	6.7	55

31	Scalable synthesis of high-quality transition metal dichalcogenide nanosheets and their application as sodium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17370-17380	13	60
30	Facile synthesis of 3D few-layered MoSicoated TiOihanosheet core-shell nanostructures for stable and high-performance lithium-ion batteries. <i>Nanoscale</i> , 2015 , 7, 12895-905	7.7	75
29	Carbon-coated Fe2O3 nanocrystals with enhanced lithium storage capability. <i>Applied Surface Science</i> , 2015 , 347, 178-185	6.7	40
28	2D Space-Confined Synthesis of Few-Layer MoS2 Anchored on Carbon Nanosheet for Lithium-Ion Battery Anode. <i>ACS Nano</i> , 2015 , 9, 3837-48	16.7	494
27	Synergistic effect of CNTs reinforcement and precipitation hardening in in-situ CNTs/Altu composites. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 633, 103-111	5.3	36
26	Soluble salt self-assembly-assisted synthesis of three-dimensional hierarchical porous carbon networks for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22266-22273	13	81
25	In situ preparation of interconnected networks constructed by using flexible graphene/Sn sandwich nanosheets for high-performance lithium-ion battery anodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 23170-23179	13	31
24	Nitrogen-doped graphene network supported copper nanoparticles encapsulated with graphene shells for surface-enhanced Raman scattering. <i>Nanoscale</i> , 2015 , 7, 17079-87	7.7	25
23	Fabrication of Nanocarbon Composites Using In Situ Chemical Vapor Deposition and Their Applications. <i>Advanced Materials</i> , 2015 , 27, 5422-31	24	43
22	Graphene networks anchored with sn@graphene as lithium ion battery anode. ACS Nano, 2014, 8, 1728	- 38 .7	533
21	Anomalous interfacial lithium storage in graphene/TiO2 for lithium ion batteries. <i>ACS Applied Materials & District ACS ACS Applied Materials & District ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	54
20	Chemical vapor deposition synthesis of carbon nanospheres over Fe-based glassy alloy particles. <i>Journal of Alloys and Compounds</i> , 2014 , 617, 816-822	5.7	5
19	Carbon-coated Ni3Sn2 nanoparticles embedded in porous carbon nanosheets as a lithium ion battery anode with outstanding cycling stability. <i>RSC Advances</i> , 2014 , 4, 49247-49256	3.7	22
18	One-pot synthesis of uniform Fe3O4 nanocrystals encapsulated in interconnected carbon nanospheres for superior lithium storage capability. <i>Carbon</i> , 2013 , 57, 130-138	10.4	93
17	Mechanical properties and interfacial analysis of aluminum matrix composites reinforced by carbon nanotubes with diverse structures. <i>Materials Science & Description of the Properties, Microstructure and Processing</i> , 2013 , 577, 120-124	5.3	36
16	Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries. <i>ACS Applied Materials & District Applied Materials & District Aces</i> , 2013 , 5, 9537-45	9.5	128
15	Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. <i>Surface and Coatings Technology</i> , 2013 , 235, 570-576	4.4	82
14	Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility. Journal of Alloys and Compounds, 2013 , 563, 216-220	5.7	73

LIST OF PUBLICATIONS

13	Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. <i>Journal of Power Sources</i> , 2013 , 236, 25-32	8.9	168
12	Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. <i>ACS Nano</i> , 2013 , 7, 4459-69	16.7	824
11	Preparation of reduced graphene oxide/Fe3O4 nanocomposite and its microwave electromagnetic properties. <i>Materials Letters</i> , 2013 , 91, 209-212	3.3	86
10	Hierarchical porous carbon with graphitic structure synthesized by a water soluble template method. <i>Materials Letters</i> , 2012 , 87, 77-79	3.3	35
9	Enhanced electrochemical performance of LiFePO4 cathode with in-situ chemical vapor deposition synthesized carbon nanotubes as conductor. <i>Journal of Power Sources</i> , 2012 , 220, 264-268	8.9	49
8	Synthesis of uniformly dispersed carbon nanotube reinforcement in Al powder for preparing reinforced Al composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2011 , 42, 1833-1839	8.4	50
7	The influences of synthesis temperature and Ni catalyst on the growth of carbon nanotubes by chemical vapor deposition. <i>Materials Letters</i> , 2008 , 62, 1472-1475	3.3	29
6	Thermogravimetric analysis and TEM characterization of the oxidation and defect sites of carbon nanotubes synthesized by CVD of methane. <i>Materials Science & Discourse And Processing</i> , 2008 , 473, 355-359	5.3	43
5	Synthesis of carbon nanostructures with different morphologies by CVD of methane. <i>Materials Science & Microstructure and Processing</i> , 2007 , 460-461, 255-260	5.3	28
4	Carbon onion growth enhanced by nitrogen incorporation. Scripta Materialia, 2006, 54, 1739-1743	5.6	14
3	Fabrication and growth mechanism of carbon nanotubes by catalytic chemical vapor deposition. <i>Materials Letters</i> , 2006 , 60, 159-163	3.3	64
2	Study of aluminum powder as transition metal catalyst carrier for CVD synthesis of carbon nanotubes. <i>Materials Science & Discreture and Processing</i> , 2006 , 441, 266-270	5.3	16
1	Recent Developments of Antimony-Based Anodes for Sodium- and Potassium-Ion Batteries. Transactions of Tianjin University,1	2.9	2