
Gitendra Uswatte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10465619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Validity and reliability of the Turkish version of the pediatric motor activity log-revised (PMAL-R) for 2–17 year old children with hemiparetic cerebral palsy. Disability and Rehabilitation, 2022, 44, 4047-4054.	1.8	6
2	Video game rehabilitation for outpatient stroke (VIGoROUS): A multi-site randomized controlled trial of in-home, self-managed, upper-extremity therapy. EClinicalMedicine, 2022, 43, 101239.	7.1	17
3	Tactile Sensation Improves Following Motor Rehabilitation for Chronic Stroke: The VIGoROUS Randomized Controlled Trial. Neurorehabilitation and Neural Repair, 2022, 36, 525-534.	2.9	1
4	Reliability and Validity of the Lower Extremity Motor Activity Log for Measuring Real-World Leg Use in Adults With Multiple Sclerosis. Archives of Physical Medicine and Rehabilitation, 2021, 102, 626-632.	0.9	6
5	Acceptability of constraint induced movement therapy: influence of perceived difficulty and expected treatment outcome. Topics in Stroke Rehabilitation, 2021, , 1-9.	1.9	6
6	Tele-rehabilitation of upper-extremity hemiparesis after stroke: Proof-of-concept randomized controlled trial of in-home Constraint-Induced Movement therapy. Restorative Neurology and Neuroscience, 2021, 39, 303-318.	0.7	9
7	Perspectives from Persons with Multiple Sclerosis for a Comprehensive Real-World Change Therapy for Mobility. Archives of Rehabilitation Research and Clinical Translation, 2021, 4, 100166.	0.9	0
8	Reproducibility of wholeâ€brain temperature mapping and metabolite quantification using proton magnetic resonance spectroscopy. NMR in Biomedicine, 2020, 33, e4313.	2.8	15
9	Protocol for a Randomized Controlled Trial of CI Therapy for Rehabilitation of Upper Extremity Motor Deficit: The Bringing Rehabilitation to American Veterans Everywhere Project. Journal of Head Trauma Rehabilitation, 2019, 34, 268-279.	1.7	9
10	Phase II Randomized Controlled Trial of Constraint-Induced Movement Therapy in Multiple Sclerosis. Part 2: Effect on White Matter Integrity. Neurorehabilitation and Neural Repair, 2018, 32, 233-241.	2.9	21
11	Phase II Randomized Controlled Trial of Constraint-Induced Movement Therapy in Multiple Sclerosis. Part 1: Effects on Real-World Function. Neurorehabilitation and Neural Repair, 2018, 32, 223-232.	2.9	21
12	Comparison of reproducibility of single voxel spectroscopy and wholeâ€brain magnetic resonance spectroscopy imaging at 3T. NMR in Biomedicine, 2018, 31, e3898.	2.8	32
13	The Pediatric SmartShoe: Wearable Sensor System for Ambulatory Monitoring of Physical Activity and Gait. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 477-486.	4.9	40
14	Rehabilitation of stroke patients with plegic hands: Randomized controlled trial of expanded Constraint-Induced Movement therapy. Restorative Neurology and Neuroscience, 2018, 36, 225-244.	0.7	24
15	Relation of white matter hyperintensities and motor deficits in chronic stroke. Restorative Neurology and Neuroscience, 2018, 36, 349-357.	0.7	3
16	Assessing the Amount of Spontaneous Real-World Spoken Language in Aphasia: Validation of Two Methods. American Journal of Speech-Language Pathology, 2017, 26, 316-326.	1.8	7
17	Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis. BMC Neurology, 2017, 17, 109.	1.8	65
18	Upper extremity motor training of a subject with initially motor complete chronic high tetraplegia using constraint-induced biofeedback therapy. Spinal Cord Series and Cases, 2017, 3, 17093.	0.6	1

9

#	Article	IF	CITATIONS
19	Relation of depressive symptoms to outcome of CI movement therapy after stroke Rehabilitation Psychology, 2017, 62, 509-515.	1.3	4
20	Translation and cross cultural adaptation of the Pediatric Motor Activity Log-Revised scale. Arquivos De Neuro-Psiquiatria, 2016, 74, 555-560.	0.8	5
21	Everyday movement and use of the arms: Relationship in children with hemiparesis differs from adults. Journal of Pediatric Rehabilitation Medicine, 2015, 8, 197-206.	0.5	22
22	The functional significance of cortical reorganization and the parallel development of CI therapy. Frontiers in Human Neuroscience, 2014, 8, 396.	2.0	49
23	Implications of CI therapy for visual deficit training. Frontiers in Integrative Neuroscience, 2014, 8, 78.	2.1	10
24	Measuring gait symmetry in children with cerebral palsy using the SmartShoe. , 2014, , .		5
25	Motor recovery from constraint induced movement therapy is not constrained by extent of tissue damage following stroke. Restorative Neurology and Neuroscience, 2014, 32, 755-765.	0.7	8
26	An Enhanced Protocol for Constraint-Induced Aphasia Therapy II: A Case Series. American Journal of Speech-Language Pathology, 2014, 23, 60-72.	1.8	33
27	Network of Movement and Proximity Sensors for Monitoring Upper-Extremity Motor Activity After Stroke: Proof of Principle. Archives of Physical Medicine and Rehabilitation, 2014, 95, 499-505.	0.9	4
28	Importance for CP Rehabilitation of Transfer of Motor Improvement to Everyday Life. Pediatrics, 2014, 133, e215-e217.	2.1	7
29	Diffusion Tensor Imaging Study of the Response to Constraint-Induced Movement Therapy of Children With Hemiparetic Cerebral Palsy and Adults With Chronic Stroke. Archives of Physical Medicine and Rehabilitation, 2014, 95, 506-514.e1.	0.9	40
30	Constraint-Induced Movement Therapy for the Lower Extremities in Multiple Sclerosis: Case Series With 4-Year Follow-Up. Archives of Physical Medicine and Rehabilitation, 2013, 94, 753-760.	0.9	38
31	Constraint-Induced Movement Therapy Combined With Conventional Neurorehabilitation Techniques in Chronic Stroke Patients With Plegic Hands: A Case Series. Archives of Physical Medicine and Rehabilitation, 2013, 94, 86-94.	0.9	74
32	Method for Enhancing Real-World Use of a More Affected Arm in Chronic Stroke. Stroke, 2013, 44, 1383-1388.	2.0	156
33	Promoting physical activity: Fertile ground for rehabilitation psychology Rehabilitation Psychology, 2013, 58, 87-88.	1.3	0
34	Structural Neuroplastic Change After Constraint-Induced Movement Therapy in Children With Cerebral Palsy. Pediatrics, 2013, 131, e1664-e1669.	2.1	74
35	Constraint-Induced Movement Therapy. Progress in Brain Research, 2013, 207, 379-401.	1.4	41

A Positive Psychology of Physical Disability. , 2013, , .

#	Article	IF	CITATIONS
37	Atrophy of Spared Gray Matter Tissue Predicts Poorer Motor Recovery and Rehabilitation Response in Chronic Stroke. Stroke, 2012, 43, 453-457.	2.0	100
38	Brain parenchymal fraction predicts motor improvement following intensive task-oriented motor rehabilitation for chronic stroke. Restorative Neurology and Neuroscience, 2012, 30, 355-361.	0.7	6
39	Pediatric Arm Function Test. American Journal of Physical Medicine and Rehabilitation, 2012, 91, 1060-1069.	1.4	18
40	The Pediatric Motor Activity Log-Revised: Assessing real-world arm use in children with cerebral palsy Rehabilitation Psychology, 2012, 57, 149-158.	1.3	61
41	Sensor-Enabled RFID System for Monitoring Arm Activity: Reliability and Validity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20, 771-777.	4.9	20
42	Sensor-enabled RFID system for monitoring arm activity in daily life. , 2011, 2011, 5219-23.		5
43	Treatment of Congenital Hemiparesis With Pediatric Constraint-Induced Movement Therapy. Journal of Child Neurology, 2011, 26, 1163-1173.	1.4	92
44	A telerehabilitation platform for home-based automated therapy of arm function. , 2011, 2011, 1819-22.		15
45	Measurement Structure of the Wolf Motor Function Test: Implications for Motor Control Theory. Neurorehabilitation and Neural Repair, 2010, 24, 791-801.	2.9	54
46	The EXCITE Stroke Trial. Stroke, 2010, 41, 2309-2315.	2.0	192
47	Central nervous system plasticity and rehabilitation , 2010, , 391-406.		1
48	Improvement After Constraint-Induced Movement Therapy Is Independent of Infarct Location in Chronic Stroke Patients. Stroke, 2009, 40, 2468-2472.	2.0	37
49	Caregiver characteristics predict stroke survivor quality of life at 4 months and 1 year. Research in Nursing and Health, 2009, 32, 592-605.	1.6	29
50	Minimal Detectable Change Scores for the Wolf Motor Function Test. Neurorehabilitation and Neural Repair, 2009, 23, 662-667.	2.9	77
51	A behavioral observation system for quantifying arm activity in daily life after stroke Rehabilitation Psychology, 2009, 54, 398-403.	1.3	35
52	Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. Lancet Neurology, The, 2008, 7, 33-40.	10.2	306
53	Article 16: Constraint-Induced Movement Therapy for Rehabilitating Arm Use in Stroke Survivors With Plegic Hands. Archives of Physical Medicine and Rehabilitation, 2008, 89, e5.	0.9	6
54	Remodeling the Brain Strobe 2008 39 1520-1525	2.0	955

2.0 355

#	Article	IF	CITATIONS
55	MRI infarction load and CI therapy outcomes for chronic post-stroke hemiparesis. Restorative Neurology and Neuroscience, 2008, 26, 13-33.	0.7	17
56	Pediatric CI therapy for stroke-induced hemiparesis in young children. Developmental Neurorehabilitation, 2007, 10, 3-18.	1.1	102
57	Poster 11: Progressive Multiple Sclerosis Improves With Constraint-Induced Movement Therapy. Archives of Physical Medicine and Rehabilitation, 2007, 88, e9.	0.9	1
58	Validity of Accelerometry for Monitoring Real-World Arm Activity in Patients With Subacute Stroke: Evidence From the Extremity Constraint-Induced Therapy Evaluation Trial. Archives of Physical Medicine and Rehabilitation, 2006, 87, 1340-1345.	0.9	205
59	Gratitude and hedonic and eudaimonic well-being in Vietnam war veterans. Behaviour Research and Therapy, 2006, 44, 177-199.	3.1	215
60	Social anxiety and posttraumatic stress in combat veterans: Relations to well-being and character strengths. Behaviour Research and Therapy, 2006, 44, 561-583.	3.1	97
61	Fragile self-esteem and affective instability in posttraumatic stress disorder. Behaviour Research and Therapy, 2006, 44, 1609-1619.	3.1	64
62	Employment in households with stroke after Constraint-Induced Movement therapy. NeuroRehabilitation, 2006, 21, 157-165.	1.3	12
63	The influence of neuropsychological characteristics on the use of CI therapy with persons with traumatic brain injury. NeuroRehabilitation, 2006, 21, 131-137.	1.3	17
64	A treatment for a chronic stroke patient with a plegic hand combining CI therapy with conventional rehabilitation procedures: Case report. NeuroRehabilitation, 2006, 21, 167-176.	1.3	32
65	Constraint-Induced Movement therapy: Answers and questions after two decades of research. NeuroRehabilitation, 2006, 21, 93-95.	1.3	97
66	Contribution of the shaping and restraint components of Constraint-Induced Movement therapy to Treatment Outcome. NeuroRehabilitation, 2006, 21, 147-156.	1.3	82
67	A Placebo-Controlled Trial of Constraint-Induced Movement Therapy for Upper Extremity After Stroke. Stroke, 2006, 37, 1045-1049.	2.0	392
68	A telerehabilitation approach to delivery of constraint-induced movement therapy. Journal of Rehabilitation Research and Development, 2006, 43, 391.	1.6	68
69	Effect of Constraint-Induced Movement Therapy on Upper Extremity Function 3 to 9 Months After Stroke. JAMA - Journal of the American Medical Association, 2006, 296, 2095.	7.4	1,608
70	The influence of neuropsychological characteristics on the use of CI therapy with persons with traumatic brain injury. NeuroRehabilitation, 2006, 21, 131-7.	1.3	6
71	Contribution of the shaping and restraint components of Constraint-Induced Movement therapy to treatment outcome. NeuroRehabilitation, 2006, 21, 147-56.	1.3	29
72	A treatment for a chronic stroke patient with a plegic hand combining CI therapy with conventional rehabilitation procedures: case report. NeuroRehabilitation, 2006, 21, 167-76.	1.3	9

#	Article	IF	CITATIONS
73	Implications of the learned nonuse formulation for measuring rehabilitation outcomes: Lessons from constraint-induced movement therapy Rehabilitation Psychology, 2005, 50, 34-42.	1.3	95
74	Constraint-induced movement therapy for recovery of upper-limb function following traumatic brain injury. Journal of Rehabilitation Research and Development, 2005, 42, 769.	1.6	87
75	Reliability and Validity of the Upper-Extremity Motor Activity Log-14 for Measuring Real-World Arm Use. Stroke, 2005, 36, 2493-2496.	2.0	437
76	USE OF CI THERAPY FOR IMPROVING MOTOR ABILITY AFTER CHRONIC CNS DAMAGE: A DEVELOPMENT PREFIGURED BY PAUL BACH-Y-RITA. Journal of Integrative Neuroscience, 2005, 04, 465-477.	1.7	5
77	AutoCITE. Stroke, 2005, 36, 1301-1304.	2.0	115
78	Distributed form of constraint-induced movement therapy improves functional outcome and quality of life after stroke. Archives of Physical Medicine and Rehabilitation, 2005, 86, 204-209.	0.9	148
79	Ambulatory Monitoring of Arm Movement Using Accelerometry: An Objective Measure of Upper-Extremity Rehabilitation in Persons With Chronic Stroke. Archives of Physical Medicine and Rehabilitation, 2005, 86, 1498-1501.	0.9	196
80	Automated Constraint-Induced Therapy Extension (AutoCITE) for movement deficits after stroke. Journal of Rehabilitation Research and Development, 2004, 41, 249.	1.6	77
81	Improved motor recovery after stroke and massive cortical reorganization following Constraint-Induced Movement therapy. Physical Medicine and Rehabilitation Clinics of North America, 2003, 14, S77-S91.	1.3	79
82	Methods for a Multisite Randomized Trial to Investigate the Effect of Constraint-Induced Movement Therapy in Improving Upper Extremity Function among Adults Recovering from a Cerebrovascular Stroke. Neurorehabilitation and Neural Repair, 2003, 17, 137-152.	2.9	226
83	Constraint-induced movement therapy: bridging from the primate laboratory to the stroke rehabilitation laboratory. Journal of Rehabilitation Medicine, 2003, 35, 34-40.	1.1	99
84	New treatments in neurorehabiliation founded on basic research. Nature Reviews Neuroscience, 2002, 3, 228-236.	10.2	592
85	The reliability of the Wolf Motor Function Test for assessing upper extremity function after stroke. Archives of Physical Medicine and Rehabilitation, 2001, 82, 750-755.	0.9	459
86	Constraint-Induced Movement Therapy and Massed Practice. Stroke, 2000, 31, 983-991.	2.0	67
87	Objective Measurement of Functional Upper-Extremity Movement Using Accelerometer Recordings Transformed With a Threshold Filter. Stroke, 2000, 31, 662-667.	2.0	195
88	Constraint-induced movement therapy based on behavioral neuroscience , 2000, , 475-496.		16
89	Constraint-induced movement therapy: A new approach to treatment in physical rehabilitation Rehabilitation Psychology, 1998, 43, 152-170.	1.3	237
90	Ethnic and minority issues in rehabilitation psychology Rehabilitation Psychology, 1997, 42, 61-71.	1.3	18

#	Article	IF	CITATIONS
91	You can teach an old dog new tricks:. , 0, , 104-129.		3