Kevin Karplus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10465311/publications.pdf

Version: 2024-02-01

236925 395702 5,472 35 25 citations h-index papers

g-index 46 46 46 7694 docs citations times ranked citing authors all docs

33

#	Article	IF	Citations
1	Fallacy of the Unique Genome: Sequence Diversity within Single $\langle i \rangle$ Helicobacter pylori $\langle i \rangle$ Strains. MBio, 2017, 8, .	4.1	64
2	Analysis of nanopore data using hidden Markov models. Bioinformatics, 2015, 31, 1897-1903.	4.1	32
3	Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18910-18915.	7.1	161
4	Automated forward and reverse ratcheting of DNA in a nanopore at 5-Ã precision. Nature Biotechnology, 2012, 30, 344-348.	17. 5	528
5	Protein Packing Quality Using Delaunay Complexes. , 2011, , .		O
6	Identification of a Chemoreceptor Zinc-Binding Domain Common to Cytoplasmic Bacterial Chemoreceptors. Journal of Bacteriology, 2011, 193, 4338-4345.	2.2	33
7	Improving protein secondary structure prediction using a simple <i>k</i> -mer model. Bioinformatics, 2010, 26, 596-602.	4.1	54
8	SAM-T08, HMM-based protein structure prediction. Nucleic Acids Research, 2009, 37, W492-W497.	14.5	120
9	Pokefind: a novel topological filter for use with protein structure prediction. Bioinformatics, 2009, 25, i281-i288.	4.1	11
10	Model quality assessment using distance constraints from alignments. Proteins: Structure, Function and Bioinformatics, 2009, 75, 540-549.	2.6	23
11	Applying undertaker cost functions to model quality assessment. Proteins: Structure, Function and Bioinformatics, 2009, 75, 550-555.	2.6	18
12	Applying Undertaker to quality assessment. Proteins: Structure, Function and Bioinformatics, 2009, 77, 191-195.	2.6	12
13	Improving physical realism, stereochemistry, and sideâ€chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins: Structure, Function and Bioinformatics, 2009, 77, 114-122.	2.6	1,105
14	P <scp>redict</scp> -2 <scp>nd</scp> : a tool for generalized protein local structure prediction. Bioinformatics, 2008, 24, 2453-2459.	4.1	34
15	Contact prediction using mutual information and neural nets. Proteins: Structure, Function and Bioinformatics, 2007, 69, 159-164.	2.6	95
16	Identification and Characterization of RbmA, a Novel Protein Required for the Development of Rugose Colony Morphology and Biofilm Structure in Vibrio cholerae. Journal of Bacteriology, 2006, 188, 1049-1059.	2.2	146
17	SAM-T04: What is new in protein-structure prediction for CASP6. Proteins: Structure, Function and Bioinformatics, 2005, 61, 135-142.	2.6	90
18	Calibrating E-values for hidden Markov models using reverse-sequence null models. Bioinformatics, 2005, 21, 4107-4115.	4.1	38

#	Article	IF	Citations
19	Methods of translating NMR proton distances into their corresponding heavy atom distances for protein structure prediction with limited experimental data. Protein Engineering, Design and Selection, 2005, 18, 597-605.	2.1	1
20	Evaluation of local structure alphabets based on residue burial. Proteins: Structure, Function and Bioinformatics, 2004, 55, 508-518.	2.6	58
21	Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry. Proteins: Structure, Function and Bioinformatics, 2003, 51, 504-514.	2.6	178
22	Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins: Structure, Function and Bioinformatics, 2003, 53, 491-496.	2.6	269
23	Bioinformatics: A New Field in Engineering Education. Journal of Engineering Education, 2003, 92, 101-104.	3.0	10
24	Predicting reliable regions in protein sequence alignments. Bioinformatics, 2002, 18, 306-314.	4.1	83
25	Information-theoretic dissection of pairwise contact potentials. Proteins: Structure, Function and Bioinformatics, 2002, 49, 7-14.	2.6	50
26	Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. Journal of Molecular Biology, 2001, 313, 903-919.	4.2	1,092
27	What is the value added by human intervention in protein structure prediction?. Proteins: Structure, Function and Bioinformatics, 2001, 45, 86-91.	2.6	104
28	Predicting protein structure using only sequence information. Proteins: Structure, Function and Bioinformatics, 1999, 37, 121-125.	2.6	76
29	Predicting protein structure using only sequence information. , 1999, 37, 121.		1
30	Predicting protein structure using only sequence information. Proteins: Structure, Function and Bioinformatics, 1999, 37, 121-125.	2.6	52
31	Kestrel: A Programmable Array for Sequence Analysis. Journal of Signal Processing Systems, 1998, 19, 115-126.	1.0	20
32	Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods. Journal of Molecular Biology, 1998, 284, 1201-1210.	4.2	498
33	Predicting protein structure using hidden Markov models. Proteins: Structure, Function and Bioinformatics, 1997, 29, 134-139.	2.6	110
34	Predicting protein structure using hidden Markov models. Proteins: Structure, Function and Bioinformatics, 1997, 29, 134-139.	2.6	31
35	A flexible motif search technique based on generalized profiles. Computers & Chemistry, 1996, 20, 3-23.	1.2	275