## **Bingxian Xie**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10464380/publications.pdf Version: 2024-02-01



RINCYIAN XIE

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Myocardial brain-derived neurotrophic factor regulates cardiac bioenergetics through the transcription factor Yin Yang 1. Cardiovascular Research, 2023, 119, 571-586.                                   | 3.8 | 12        |
| 2  | Diet-induced obese mice are resistant to improvements in cardiac function resulting from short-term adropin treatment. Current Research in Physiology, 2022, 5, 55-62.                                   | 1.7 | 3         |
| 3  | Empagliflozin restores cardiac metabolic flexibility in diet-induced obese C57BL6/J mice. Current Research in Physiology, 2022, 5, 232-239.                                                              | 1.7 | 8         |
| 4  | Tregs facilitate obesity and insulin resistance via a Blimp-1/IL-10 axis. JCI Insight, 2021, 6, .                                                                                                        | 5.0 | 54        |
| 5  | Cardiomyocyte-specific deletion of GCN5L1 in mice restricts mitochondrial protein hyperacetylation in response to a high fat diet. Scientific Reports, 2020, 10, 10665.                                  | 3.3 | 17        |
| 6  | Liver-specific Prkn knockout mice are more susceptible to diet-induced hepatic steatosis and insulin<br>resistance. Molecular Metabolism, 2020, 41, 101051.                                              | 6.5 | 27        |
| 7  | Sustained mitochondrial biogenesis is essential to maintain caloric restriction-induced beige adipocytes. Metabolism: Clinical and Experimental, 2020, 107, 154225.                                      | 3.4 | 20        |
| 8  | The Transcriptional Regulator Id2 Is Critical for Adipose-Resident Regulatory T Cell Differentiation,<br>Survival, and Function. Journal of Immunology, 2019, 203, 658-664.                              | 0.8 | 27        |
| 9  | A Manganese-Superoxide Dismutase From Thermus thermophilus HB27 Suppresses Inflammatory<br>Responses and Alleviates Experimentally Induced Colitis. Inflammatory Bowel Diseases, 2019, 25,<br>1644-1655. | 1.9 | 17        |
| 10 | Adropin reduces blood glucose levels in mice by limiting hepatic glucose production. Physiological Reports, 2019, 7, e14043.                                                                             | 1.7 | 34        |
| 11 | Adropin treatment restores cardiac glucose oxidation in pre-diabetic obese mice. Journal of<br>Molecular and Cellular Cardiology, 2019, 129, 174-178.                                                    | 1.9 | 41        |
| 12 | The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial β-oxidation enzyme HADHA. Journal of Biological Chemistry, 2018, 293, 17676-17684.     | 3.4 | 62        |
| 13 | Adropin regulates pyruvate dehydrogenase in cardiac cells via a novel GPCR-MAPK-PDK4 signaling pathway. Redox Biology, 2018, 18, 25-32.                                                                  | 9.0 | 66        |
| 14 | Rab8a Deficiency in Skeletal Muscle Causes Hyperlipidemia and Hepatosteatosis by Impairing Muscle<br>Lipid Uptake and Storage. Diabetes, 2017, 66, 2387-2399.                                            | 0.6 | 18        |
| 15 | A Tbc1d1 Ser231Ala-knockin mutation partially impairs AICAR- but not exercise-induced muscle glucose uptake in mice. Diabetologia, 2017, 60, 336-345.                                                    | 6.3 | 32        |
| 16 | Apple-Derived Pectin Modulates Gut Microbiota, Improves Gut Barrier Function, and Attenuates<br>Metabolic Endotoxemia in Rats with Diet-Induced Obesity. Nutrients, 2016, 8, 126.                        | 4.1 | 158       |
| 17 | A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model. Biology Open, 2016, 5, 979-986.                                                      | 1.2 | 15        |
| 18 | The Inactivation of RabGAP Function of AS160 Promotes Lysosomal Degradation of GLUT4 and Causes Postprandial Hyperglycemia and Hyperinsulinemia. Diabetes, 2016, 65, 3327-3340.                          | 0.6 | 32        |

BINGXIAN XIE

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Disruption of the AMPK–TBC1D1 nexus increases lipogenic gene expression and causes obesity in mice<br>via promoting IGF1 secretion. Proceedings of the National Academy of Sciences of the United States of<br>America, 2016, 113, 7219-7224. | 7.1 | 41        |
| 20 | PKB-Mediated Thr649 Phosphorylation of AS160/TBC1D4 Regulates the R-Wave Amplitude in the Heart.<br>PLoS ONE, 2015, 10, e0124491.                                                                                                             | 2.5 | 9         |
| 21 | GARNL1, a major RalGAP α subunit in skeletal muscle, regulates insulin-stimulated RalA activation and GLUT4 trafficking via interaction with 14-3-3 proteins. Cellular Signalling, 2014, 26, 1636-1648.                                       | 3.6 | 37        |
| 22 | Rab8a-AS160-MSS4 Regulatory Circuit Controls Lipid Droplet Fusion and Growth. Developmental Cell, 2014, 30, 378-393.                                                                                                                          | 7.0 | 98        |
| 23 | AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues.<br>Biochemical Journal, 2013, 449, 479-489.                                                                                                  | 3.7 | 71        |