Ã,ngelo L Gobbi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1046401/publications.pdf

Version: 2024-02-01

104 papers 1,950 citations

279798 23 h-index 289244 40 g-index

105 all docs

 $\begin{array}{c} 105 \\ \\ \text{docs citations} \end{array}$

105 times ranked 2391 citing authors

#	Article	IF	Citations
1	Microemulsification-based method enables field-deployable quantification of oil in produced water. Fuel, 2022, 308, 121960.	6.4	3
2	Fast and efficient electrochemical thinning of ultra-large supported and free-standing MoS ₂ layers on gold surfaces. Nanoscale, 2022, 14, 6811-6821.	5 . 6	2
3	Biocompatible Wearable Electrodes on Leaves toward the On-Site Monitoring of Water Loss from Plants. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22989-23001.	8.0	25
4	Using machine learning and an electronic tongue for discriminating saliva samples from oral cavity cancer patients and healthy individuals. Talanta, 2022, 243, 123327.	5 . 5	19
5	Real-Time and <i>In Situ</i> Monitoring of the Synthesis of Silica Nanoparticles. ACS Sensors, 2022, 7, 1045-1057.	7.8	11
6	Distilling small volumes of crude oil. Fuel, 2021, 285, 119072.	6.4	8
7	3D micromixer for nanoliposome synthesis: a promising advance in high mass productivity. Lab on A Chip, 2021, 21, 2971-2985.	6.0	17
8	Functionalized microchannels as xylem-mimicking environment: Quantifying X.Âfastidiosa cell adhesion. Biophysical Journal, 2021, 120, 1443-1453.	0.5	0
9	Bifunctional Metal Meshes Acting as a Semipermeable Membrane and Electrode for Sensitive Electrochemical Determination of Volatile Compounds. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35914-35923.	8.0	13
10	Alcohol-Triggered Capillarity through Porous Pyrolyzed Paper-Based Electrodes Enables Ultrasensitive Electrochemical Detection of Phosphate. ACS Sensors, 2021, 6, 3125-3132.	7.8	24
11	Influence of the Molecular Orientation and Ionization of Self-Assembled Monolayers in Biosensors: Application to Genosensors of Prostate Cancer Antigen 3. Journal of Physical Chemistry C, 2021, 125, 498-506.	3.1	21
12	Development of a sticker sealed microfluidic device for in situ analytical measurements using synchrotron radiation. Scientific Reports, 2021, 11, 23671.	3.3	8
13	Ordinary microfluidic electrodes combined with bulk nanoprobe produce multidimensional electric double-layer capacitances towards metal ion recognition. Sensors and Actuators B: Chemical, 2020, 305, 127482.	7.8	16
14	Effects of Mg addition on the phase formation, morphology, and mechanical and tribological properties of Ti-Nb-Mg immiscible alloy coatings produced by magnetron co-sputtering. Surface and Coatings Technology, 2020, 400, 126070.	4.8	6
15	Fabrication process of integrated inductors on flexible substrate for radio frequency and microwave applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	1.2	5
16	Pencil graphite core for pattern recognition applications. Chemical Communications, 2019, 55, 4623-4626.	4.1	11
17	Enhanced mobility and controlled transparency in multilayered reduced graphene oxide quantum dots: a charge transport study. Nanotechnology, 2019, 30, 275701.	2.6	11
18	Chemical state of phosphorous at the SiC/SiO2 interface. Thin Solid Films, 2019, 675, 172-176.	1.8	0

#	Article	IF	CITATIONS
19	Assessing electronic states of InAsP/GaAs self-assembled quantum dots by photoluminescence and modulation spectroscopy. Journal of Luminescence, 2019, 206, 639-644.	3.1	2
20	A simple architecture with self-assembled monolayers to build immunosensors for detecting the pancreatic cancer biomarker CA19-9. Analyst, The, 2018, 143, 3302-3308.	3.5	28
21	Monitoring the Surface Chemistry of Functionalized Nanomaterials with a Microfluidic Electronic Tongue. ACS Sensors, 2018, 3, 716-726.	7.8	28
22	Auxiliary electrode oxidation for naked-eye electrochemical determinations in microfluidics: Towards on-the-spot applications. Electrochimica Acta, 2018, 292, 125-135.	5.2	7
23	Poole–Frenkel emission on functionalized, multilayered-packed reduced graphene oxide nanoplatelets. Nanotechnology, 2018, 29, 505703.	2.6	12
24	Low-Cost and Rapid-Production Microfluidic Electrochemical Double-Layer Capacitors for Fast and Sensitive Breast Cancer Diagnosis. Analytical Chemistry, 2018, 90, 12377-12384.	6.5	28
25	Gravity-assisted distillation on a chip: Fabrication, characterization, and applications. Analytica Chimica Acta, 2018, 1033, 128-136.	5.4	8
26	Turbulence-Assisted High-Throughput Liquid–Liquid Extraction in Microfluidics and Ni(OH) ₂ Nanoparticles for Electrochemical Determination of Monoethylene Glycol Traces in Natural Gas Condensate. Energy & Fuels, 2018, 32, 6577-6583.	5.1	9
27	Simple, Expendable, 3D-Printed Microfluidic Systems for Sample Preparation of Petroleum. Analytical Chemistry, 2017, 89, 3460-3467.	6.5	52
28	Information Visualization and Feature Selection Methods Applied to Detect Gliadin in Gluten-Containing Foodstuff with a Microfluidic Electronic Tongue. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19646-19652.	8.0	47
29	Intervening factors in the performance of a naked-eye microemulsification-based method and improvements in analytical frequency. Analytical Methods, 2017, 9, 3347-3355.	2.7	1
30	Thermal desorption modulation for comprehensive two-dimensional gas chromatography using a simple and inexpensive segmented-loop fluidic interface. Talanta, 2017, 164, 470-476.	5. 5	18
31	Charge carrier transport in defective reduced graphene oxide as quantum dots and nanoplatelets in multilayer films. Nanotechnology, 2017, 28, 495711.	2.6	14
32	Functionalization-Free Microfluidic Electronic Tongue Based on a Single Response. ACS Sensors, 2017, 2, 1027-1034.	7.8	34
33	Simplified fabrication of integrated microfluidic devices using fused deposition modeling 3D printing. Sensors and Actuators B: Chemical, 2017, 242, 35-40.	7.8	112
34	Simple, rapid and, costâ€effective fabrication of PDMS electrophoresis microchips using poly(vinyl) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 50
35	High adhesion strength and hybrid irreversible/reversible full-PDMS microfluidic chips. Analytica Chimica Acta, 2017, 951, 116-123.	5.4	15
36	Microfluidic Electronic Tongue Applied to Soil Analysis. Chemosensors, 2017, 5, 14.	3.6	26

#	Article	IF	CITATIONS
37	A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces. Biosensors and Bioelectronics, 2016, 86, 369-376.	10.1	62
38	Simple Solid-Phase Extraction Method for High Efficiency and Low-Cost Crude Oil Demulsification. Energy & Energ	5.1	11
39	Point-of-use electroanalytical platform based on homemade potentiostat and smartphone for multivariate data processing. Electrochimica Acta, 2016, 219, 170-177.	5.2	41
40	Turbulence in microfluidics: Cleanroom-free, fast, solventless, and bondless fabrication and application in high throughput liquid-liquid extraction. Analytica Chimica Acta, 2016, 940, 73-83.	5.4	24
41	Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices. Scientific Reports, 2016, 6, 26032.	3.3	44
42	Renewable Solid Electrodes in Microfluidics: Recovering the Electrochemical Activity without Treating the Surface. Analytical Chemistry, 2016, 88, 11199-11206.	6.5	17
43	Sacrificial adhesive bonding: a powerful method for fabrication of glass microchips. Scientific Reports, 2015, 5, 13276.	3.3	29
44	Gas Sensors Based on Locally Heated Multiwall Carbon Nanotubes Decorated with Metal Nanoparticles. Journal of Sensors, 2015, 2015, 1-8.	1.1	5
45	Oxygen Transport and Incorporation in Pt/HfO2 Stacks Deposited on Germanium and Silicon. Journal of Physical Chemistry C, 2015, 119, 4079-4084.	3.1	1
46	An integrated platform for gas-diffusion separation and electrochemical determination of ethanol on fermentation broths. Analytica Chimica Acta, 2015, 875, 33-40.	5.4	11
47	Optical paper-based sensor for ascorbic acid quantification using silver nanoparticles. Talanta, 2015, 141, 188-194.	5.5	66
48	SiC Nitridation by NH3 Annealing and Its Effects in MOS Capacitors with Deposited SiO2 Films. Journal of Electronic Materials, 2015, 44, 2823-2828.	2.2	12
49	Microemulsification-based method: analysis of ethanol in fermentation broth of sugar cane. Analytical Methods, 2015, 7, 10061-10066.	2.7	5
50	Microemulsification-Based Method: Analysis of Monoethylene Glycol in Samples Related to Natural Gas Processing. Energy & Samp; Fuels, 2015, 29, 5649-5654.	5.1	5
51	Microfluidic electronic tongue. Sensors and Actuators B: Chemical, 2015, 207, 1129-1135.	7.8	62
52	High fidelity prototyping of PDMS electrophoresis microchips using laser-printed masters. Microsystem Technologies, 2015, 21, 1345-1352.	2.0	12
53	Design, Fabrication and Characterization of SAW Pressure Sensors for Extreme Operation Conditions. Procedia Engineering, 2014, 87, 540-543.	1.2	13
54	Portable platform for rapid and indirect photometric determination of water in ethanol fuel samples. Analytical Methods, 2014, 6, 9497-9502.	2.7	11

#	Article	IF	CITATIONS
55	Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications. Materials Science and Engineering C, 2014, 43, 45-49.	7.3	32
56	Microemulsification: An Approach for Analytical Determinations. Analytical Chemistry, 2014, 86, 9082-9090.	6.5	19
57	Highly sensitive contactless conductivity microchips based on concentric electrodes for flow analysis. Chemical Communications, 2013, 49, 11382.	4.1	14
58	Fabrication of glass microchannels by xurography for electrophoresis applications. Analyst, The, 2013, 138, 1660.	3.5	31
59	Characterization of microchip electrophoresis devices fabricated by directâ€printing process with colored toner. Electrophoresis, 2013, 34, 2169-2176.	2.4	16
60	Glass/ <scp>SU</scp> â€8 microchip for electrokinetic applications. Electrophoresis, 2013, 34, 2996-3002.	2.4	8
61	Surface characterization of Zr/Ti/Nb tri-layered films deposited by magnetron sputtering on $Si(111)$ and stainless steel substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	10
62	Micro-reactors for characterization of nanostructure-based sensors. Review of Scientific Instruments, 2012, 83, 055104.	1.3	7
63	Micro-Reactors for Testing Sensor Devices Based on Suspended Carbon Nanotubes. ECS Transactions, 2012, 49, 191-197.	0.5	0
64	MEMS-Based Ultrasound Transducer: CMUT Modeling and Fabrication Process. ECS Transactions, 2012, 49, 431-438.	0.5	3
65	Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device. Analytica Chimica Acta, 2012, 725, 44-50.	5.4	191
66	Contactless conductivity biosensor in microchip containing folic acid as bioreceptor. Lab on A Chip, 2012, 12, 1963.	6.0	24
67	Cross-Shaped Terahertz Metal Mesh Filters: Historical Review and Results. Advances in Optical Technologies, 2012, 2012, 1-12.	0.8	43
68	Investigation of indirect structural and chemical parameters of GeSi nanoparticles in a silica matrix by combined synchrotron radiation techniques. Journal of Applied Crystallography, 2012, 45, 71-84.	4.5	4
69	Doping of a dielectric layer as a new alternative for increasing sensitivity of the contactless conductivity detection in microchips. Lab on A Chip, 2011, 11, 4148.	6.0	20
70	A rapid and reliable bonding process for microchip electrophoresis fabricated in glass substrates. Electrophoresis, 2010, 31, 2526-2533.	2.4	35
71	Development of a disposable amperometric biosensor for salicylate based on a plastic electrochemical microcell. Biosensors and Bioelectronics, 2010, 25, 2200-2204.	10.1	10
72	Fabrication and Characterization of an Impedance Micro-Bridge for Lab-on-a-Chip. ECS Transactions, 2010, 31, 155-163.	0.5	3

#	Article	IF	Citations
73	Electrochemical Detection in a Paper-Based Separation Device. Analytical Chemistry, 2010, 82, 1162-1165.	6.5	197
74	Enhancement in interface robustness regarding thermal oxidation in nanostructured Al2O3 deposited on 4H-SiC. Applied Physics Letters, 2009, 95, 051916.	3. 3	8
75	Photocatalytic decomposition of methylene blue via Fenton mechanisms by silicon wafer doped with Au and Cu: a theoretical and experimental study. Journal of Materials Science, 2009, 44, 1029-1034.	3.7	10
76	An ultrasoft X-ray multi-microbeam irradiation system for studies of DNA damage responses by fixed-and live-cell fluorescence microscopy. European Biophysics Journal, 2009, 38, 721-728.	2.2	14
77	The interaction between atoms of Au and Cu with clean Si(111) surface: A study combining synchrotron radiation grazing incidence X-ray fluorescence analysis and theoretical calculations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 292-296.	3.9	6
78	Fabrication of a multichannel PDMS/glass analytical microsystem with integrated electrodes for amperometric detection. Lab on A Chip, 2009, 9, 115-121.	6.0	38
79	Synthesis of carbon nanotubes directly over TEM grids aiming the study of nucleation and growth mechanisms. Applied Surface Science, 2008, 254, 3890-3895.	6.1	5
80	Experimental magnetic study and evidence of the exchange bias effect in unidimensional Co arrays produced by interference lithography. Solid State Communications, 2007, 142, 228-231.	1.9	9
81	Structure, morphology, and composition of nanometric Pd films deposited by dc magnetron sputtering on Cu, Ag, and Au foils. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 432, 303-307.	5. 6	4
82	Barrier-induced carrier localization effects in ordered/disordered/ordered quaternary quantum wells grown onGaAssubstrates. Physical Review B, 2006, 73, .	3.2	1
83	Production of nanostructured magnetic materials using holographic lithography. Journal of Magnetism and Magnetic Materials, 2005, 294, e63-e67.	2.3	5
84	Structure, morphology and composition of thin Pd and Ni films deposited by dc magnetron sputtering on polycrystalline Ni and Pd foils. Journal Physics D: Applied Physics, 2005, 38, 4241-4244.	2.8	5
85	XPS and atomic force microscopy analyses of thin Au and Cu films on Pd. Surface and Interface Analysis, 2004, 36, 931-934.	1.8	10
86	Biaxial stress ring applications to magneto-optical studies of semiconductor films. Review of Scientific Instruments, 2004, 75, 1947-1951.	1.3	7
87	Effects of barrier alloy composition and number of stacks in the optical and structural characteristics of strain compensated InxGalâ^'xAsyPlâ^'y/InzGalâ^'zAstPlâ^'t/InP multiquantum wells. Journal of Applied Physics, 2002, 91, 5915-5922.	2.5	1
88	Evidence of Room Temperature Charge-Density Wave Behavior and Glass-like States in Pressed Pellets of Lightly Doped Poly (3-methyl thiophene). Molecular Crystals and Liquid Crystals, 2002, 374, 119-124.	0.9	1
89	Many particle theory for the luminescence, characterization and simulation of quantum well laser structures. Brazilian Journal of Physics, 2002, 32, 386-388.	1.4	0
90	Impact of growth rate on the quality of ZNS-MQW InGaAsP/InP laser structures grown by LP-MOVPE. Journal of Electronic Materials, 2000, 29, 62-68.	2.2	2

#	Article	IF	CITATIONS
91	Surface size effect on the growth mode and morphology of InP epitaxial films. Physical Review B, 2000, 62, 15409-15412.	3.2	1
92	Strained In 1-xGaxAsyP1-y/InP quantum well heterostructures grown by low-pressure metalorganic vapor phase epitaxy. Materials Research, 1999, 2, 49-57.	1.3	0
93	Photoluminescence microscopy imaging of tensile strained In1â^'xGaxAsyP1â^'y/InP quantum wells grown by low-pressure metalorganic vapor phase epitaxy. Journal of Applied Physics, 1999, 86, 402-407.	2.5	1
94	Morphological, optical and structural properties of zero-net-strained InGaAsP/InP structures grown by LP-MOVPE for 1.55mum laser applications. Brazilian Journal of Physics, 1999, 29, 839-842.	1.4	0
95	Size effects on the growth mode and roughness of sub-micron structures grown by selective area epitaxy. Brazilian Journal of Physics, 1999, 29, 764-767.	1.4	0
96	Reflecting polarizing beam splitter. Optics Letters, 1997, 22, 203.	3.3	35
97	Single-lateral-mode operation of 980-nm InGaAs-(Al)GaAs pump lasers with uncoated and coated facets. IEEE Photonics Technology Letters, 1996, 8, 605-607.	2.5	7
98	Spatially resolved photoluminescence investigation of optical damage induced by SiNx deposition in InGaAs. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 23, 142-146.	3.5	1
99	Silicon nitride/semiconductor interface state density as a function of the insulator stoichiometry. Applied Surface Science, 1992, 56-58, 881-887.	6.1	4
100	Photoluminescence investigation of III-V semiconductor surface damage induced by PECVD silicon nitride films. Applied Surface Science, 1991, 52, 295-302.	6.1	4
101	Electrical characteristics of silicon nitride on silicon and InGaAs as a function of the insulator stoichiometry. Applied Surface Science, 1991, 52, 45-52.	6.1	12
102	Identification of silicon nitride/InGaAs interface states. Applied Physics Letters, 1990, 56, 1661-1663.	3.3	8
103	On the influence of an external D.C. substrate bias on boron and phosphorus doping efficiencies in a-Si:H. Journal of Non-Crystalline Solids, 1985, 77-78, 527-530.	3.1	1
104	Design, Development, Construction and Installation of a Ceramic Chamber for a Pulsed Kicker at LNLS Storage Ring., 0,,.		1