Sanjeeb K Sahoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10463956/publications.pdf

Version: 2024-02-01

71102 133252 13,228 57 41 59 citations h-index g-index papers 61 61 61 18071 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 147-166.	3.3	1,168
2	Nanotech approaches to drug delivery and imaging. Drug Discovery Today, 2003, 8, 1112-1120.	6.4	980
3	Rapid endoâ€lysosomal escape of poly(DLâ€lactideâ€ <i>co</i> glycolide) nanoparticles: implications for drug and gene delivery. FASEB Journal, 2002, 16, 1217-1226.	0.5	950
4	PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced Drug Delivery Reviews, 2011, 63, 170-183.	13.7	908
5	Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of Controlled Release, 2002, 82, 105-114.	9.9	846
6	Iron Oxide Nanoparticles for Sustained Delivery of Anticancer Agents. Molecular Pharmaceutics, 2005, 2, 194-205.	4.6	814
7	Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discovery Today, 2010, 15, 842-850.	6.4	550
8	Nanotechnology in ocular drug delivery. Drug Discovery Today, 2008, 13, 144-151.	6.4	470
9	Polymer degradation and in vitro release of a model protein from poly(d,l-lactide-co-glycolide) nanoand microparticles. Journal of Controlled Release, 2003, 92, 173-187.	9.9	446
10	The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials, 2010, 31, 6597-6611.	11.4	433
11	Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials, 2010, 31, 3694-3706.	11.4	359
12	Polymeric nanoparticles for cancer therapy. Journal of Drug Targeting, 2008, 16, 108-123.	4.4	349
13	Enhanced Antiproliferative Activity of Transferrin-Conjugated Paclitaxel-Loaded Nanoparticles Is Mediated via Sustained Intracellular Drug Retention. Molecular Pharmaceutics, 2005, 2, 373-383.	4.6	311
14	Efficacy of transferrinâ€conjugated paclitaxelâ€loaded nanoparticles in a murine model of prostate cancer. International Journal of Cancer, 2004, 112, 335-340.	5.1	303
15	3-D Tumor Model for <i>In Vitro</i> Evaluation of Anticancer Drugs. Molecular Pharmaceutics, 2008, 5, 849-862.	4.6	299
16	Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials, 2009, 30, 5737-5750.	11.4	298
17	Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,l-lactide-co-glycolide) nanoparticles. International Journal of Pharmaceutics, 2003, 262, 1-11.	5.2	285
18	Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discovery Today, 2014, 19, 474-481.	6.4	256

#	Article	IF	CITATIONS
19	Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. European Journal of Pharmacology, 2011, 670, 372-383.	3.5	240
20	Curcumin and its topical formulations for wound healing applications. Drug Discovery Today, 2017, 22, 1582-1592.	6.4	211
21	Coformulation of Doxorubicin and Curcumin in Poly(<scp>d</scp> , <scp>l</scp> -lactide- <i>co</i> perpose Development of Multidrug Resistance in K562 Cells. Molecular Pharmaceutics, 2011, 8, 852-866.	4.6	209
22	Ligand-based targeted therapy for cancer tissue. Expert Opinion on Drug Delivery, 2009, 6, 285-304.	5.0	199
23	Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy. European Journal of Pharmaceutical Sciences, 2010, 39, 152-163.	4.0	194
24	Characterization of Porous PLGA/PLA Microparticles as a Scaffold for Three Dimensional Growth of Breast Cancer Cells. Biomacromolecules, 2005, 6, 1132-1139.	5.4	179
25	Sustained Wound Healing Activity of Curcumin Loaded Oleic Acid Based Polymeric Bandage in a Rat Model. Molecular Pharmaceutics, 2012, 9, 2801-2811.	4.6	166
26	Nanomedicine. Clinical Pharmacokinetics, 2006, 45, 965-988.	3.5	150
27	Enhanced antiproliferative activity of Herceptin (HER2)-conjugated gemcitabine-loaded chitosan nanoparticle in pancreatic cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 859-870.	3.3	148
28	Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opinion on Drug Delivery, 2012, 9, 1347-1364.	5.0	131
29	Long circulation and cytotoxicity of PEGylated gemcitabine and its potential for the treatment of pancreatic cancer. Biomaterials, 2010, 31, 9340-9356.	11.4	121
30	Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine, 2010, 5, 433-449.	3.3	121
31	Delivery of Dual Drug Loaded Lipid Based Nanoparticles across the Blood–Brain Barrier Impart Enhanced Neuroprotection in a Rotenone Induced Mouse Model of Parkinson's Disease. ACS Chemical Neuroscience, 2016, 7, 1658-1670.	3.5	111
32	Receptor Mediated Tumor Targeting: An Emerging Approach for Cancer Therapy. Current Drug Delivery, 2011, 8, 45-58.	1.6	96
33	Multifunctional nanoparticle–EpCAM aptamer bioconjugates: A paradigm for targeted drug delivery and imaging in cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 379-389.	3.3	94
34	Sustained antibacterial activity of doxycycline-loaded poly($<$ scp>D, $<$ scp>L-lactide-co-glycolide) and poly($\hat{l}\mu$ -caprolactone) nanoparticles. Nanomedicine, 2009, 4, 519-530.	3.3	90
35	Folate Decorated Dual Drug Loaded Nanoparticle: Role of Curcumin in Enhancing Therapeutic Potential of Nutlin-3a by Reversing Multidrug Resistance. PLoS ONE, 2012, 7, e32920.	2.5	86
36	Evaluation of cytotoxicity and mechanism of apoptosis of doxorubicin using folate-decorated chitosan nanoparticles for targeted delivery to retinoblastoma. Cancer Nanotechnology, 2010, 1, 47-62.	3.7	55

#	Article	IF	CITATIONS
37	Reversal of multidrug resistance in vitro by co-delivery of MDR1 targeting siRNA and doxorubicin using a novel cationic poly(lactide-co-glycolide) nanoformulation. International Journal of Pharmaceutics, 2014, 475, 372-384.	5.2	49
38	Inhibition of Apoptosis Through Localized Delivery of Rapamycin-Loaded Nanoparticles Prevented Neointimal Hyperplasia and Reendothelialized Injured Artery. Circulation: Cardiovascular Interventions, 2008, 1, 209-216.	3.9	46
39	Optimization of physicochemical parameters influencing the fabrication of protein-loaded chitosan nanoparticles. Nanomedicine, 2009, 4, 773-785.	3.3	43
40	Augmented Anticancer Efficacy by si-RNA Complexed Drug-Loaded Mesoporous Silica Nanoparticles in Lung Cancer Therapy. ACS Applied Nano Materials, 2018, 1, 730-740.	5 . O	35
41	Multimodal Treatment Eliminates Cancer Stem Cells and Leads to Long-Term Survival in Primary Human Pancreatic Cancer Tissue Xenografts. PLoS ONE, 2013, 8, e66371.	2.5	33
42	Antibacterial Activity of Doxycycline-Loaded Nanoparticles. Methods in Enzymology, 2012, 509, 61-85.	1.0	32
43	Etoposide-loaded biodegradable amphiphilic methoxy (poly ethylene glycol) and poly (epsilon) Tj ETQq1 1 0.78 17, 330-342.	4314 rgBT 5.7	/Overlock 10 30
44	Sustained targeting of Bcr–AblÂ+Âleukemia cells by synergistic action of dual drug loaded nanoparticles and its implication for leukemia therapy. Biomaterials, 2011, 32, 5643-5662.	11.4	30
45	Targeted nutlin-3a loaded nanoparticles inhibiting p53–MDM2 interaction: novel strategy for breast cancer therapy. Nanomedicine, 2011, 6, 489-507.	3.3	25
46	Reduced Folate Carrier Independent Internalization of PEGylated Pemetrexed: A Potential Nanomedicinal Approach for Breast Cancer Therapy. Molecular Pharmaceutics, 2012, 9, 2828-2843.	4.6	22
47	Cancer Nanotheranostics: A Nanomedicinal Approach for Cancer Therapy and Diagnosis. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 1288-1299.	1.7	18
48	Toxicogenomics of nanoparticulate delivery of etoposide: potential impact on nanotechnology in retinoblastoma therapy. Cancer Nanotechnology, 2011, 2, 21-36.	3.7	17
49	Enhanced in vitro antiproliferative effects of EpCAM antibody-functionalized paclitaxel-loaded PLGA nanoparticles in retinoblastoma cells. Molecular Vision, 2011, 17, 2724-37.	1.1	17
50	Magnetic Nanoparticles Labeled Mesenchymal Stem Cells: A Pragmatic Solution toward Targeted Cancer Theranostics. Advanced Healthcare Materials, 2015, 4, 2078-2089.	7.6	12
51	Protective efficacy of crocetin and its nanoformulation against cyclosporine A-mediated toxicity in human embryonic kidney cells. Life Sciences, 2019, 216, 39-48.	4.3	11
52	Nano-Sized Carriers for Drug Delivery. , 2008, , 329-348.		10
53	Exploitation of redox discrepancy in leukemia cells by a reactive oxygen species nanoscavenger for inducing cytotoxicity in imatinib resistant cells. Journal of Colloid and Interface Science, 2016, 467, 180-191.	9.4	10
54	Nanobiotechnology: Application of Nanotechnology in Therapeutics and Diagnosis. International Journal of Green Nanotechnology Biomedicine, 2009, 1, 24-38.	0.4	9

#	Article	IF	CITATIONS
55	Synergistic activity of combination therapy with PEGylated pemetrexed and gemcitabine for an effective cancer treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 83-93.	4.3	5
56	Observed and modelâ€simulated thermodynamic processes associated with urban heavy rainfall events over Bangalore, India. Meteorological Applications, 2020, 27, e1854.	2.1	5
57	PEGylation of an osteoclast inhibitory peptide: Suitable candidate for the treatment of osteoporosis. International Journal of Pharmaceutics, 2012, 434, 429-436.	5.2	3