
Hannele Hakola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10463866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Observations of Atmospheric Aerosol Nucleation. Science, 2013, 339, 943-946.	6.0	876
2	Product formation from the gas-phase reactions of OH radicals and O3 with a series of monoterpenes. Journal of Atmospheric Chemistry, 1994, 18, 75-102.	1.4	270
3	Temporal trends of Persistent Organic Pollutants (POPs) in arctic air: 20Âyears of monitoring under the Arctic Monitoring and Assessment Programme (AMAP). Environmental Pollution, 2016, 217, 52-61.	3.7	198
4	The hydrocarbon emission rates of tea-leafed willow (Salix phylicifolia), silver birch (Betula pendula) and European aspen (Populus tremula). Atmospheric Environment, 1998, 32, 1825-1833.	1.9	190
5	Canopy scale monoterpene emissions of Pinus sylvestris dominated forests. Atmospheric Environment, 2000, 34, 1099-1107.	1.9	98
6	Long-term measurements of volatile organic compounds highlight the importance of sesquiterpenes for the atmospheric chemistry of a boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 13839-13863.	1.9	79
7	The ambient concentrations of biogenic hydrocarbons at a northern European, boreal site. Atmospheric Environment, 2000, 34, 4971-4982.	1.9	73
8	Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Science of the Total Environment, 2018, 625, 1129-1145.	3.9	72
9	BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate. Bulletin of the American Meteorological Society, 2016, 97, 1909-1928.	1.7	71
10	Determination of source contributions of NMHCs in Helsinki (60\$deg;N, 25\$deg;E) using chemical mass balance and the Unmix multivariate receptor models. Atmospheric Environment, 2003, 37, 1413-1424.	1.9	66
11	Aromatic hydrocarbon and methyl tert-butyl ether measurements in ambient air of Helsinki (Finland) using diffusive samplers. Science of the Total Environment, 2002, 298, 55-64.	3.9	54
12	Ambient Air Concentrations, Source Profiles, and Source Apportionment of 71 Different C2â^C10 Volatile Organic Compounds in Urban and Residential Areas of Finland. Environmental Science & Technology, 2006, 40, 103-108.	4.6	54
13	Time trends of persistent organic pollutants (POPs) and Chemicals of Emerging Arctic Concern (CEAC) in Arctic air from 25Âyears of monitoring. Science of the Total Environment, 2021, 775, 145109.	3.9	54
14	Background concentrations and source apportionment of polycyclic aromatic hydrocarbons in south-eastern Finland. Atmospheric Environment, 2011, 45, 3391-3399.	1.9	53
15	Gas-phase alkylamines in a boreal Scots pine forest air. Atmospheric Environment, 2013, 80, 369-377.	1.9	51
16	Direct measurement of NO ₃ radical reactivity in a boreal forest. Atmospheric Chemistry and Physics, 2018, 18, 3799-3815.	1.9	45
17	Measurements of hydrocarbon fluxes by a gradient method above a northern boreal forest. Agricultural and Forest Meteorology, 2000, 102, 25-37.	1.9	41
18	Receptor modelling and risk assessment of volatile organic compounds measured at a regional background site in South Africa. Atmospheric Environment, 2018, 172, 133-148.	1.9	41

HANNELE HAKOLA

#	Article	IF	CITATIONS
19	Ten years of light hydrocarbons (C2–C6) concentration measurements in background air in Finland. Atmospheric Environment, 2006, 40, 3621-3630.	1.9	38
20	Terpenoid and carbonyl emissions from Norway spruce in Finland during the growing season. Atmospheric Chemistry and Physics, 2017, 17, 3357-3370.	1.9	36
21	Assessment of the spatial and temporal distribution of persistent organic pollutants (POPs) in the Nordic atmosphere. Atmospheric Environment, 2016, 140, 22-33.	1.9	35
22	Measurements of biogenic volatile organic compounds at a grazed savannah grassland agricultural landscape in South Africa. Atmospheric Chemistry and Physics, 2016, 16, 15665-15688.	1.9	30
23	Amines in boreal forest air at SMEAR II station in Finland. Atmospheric Chemistry and Physics, 2018, 18, 6367-6380.	1.9	29
24	Alkyl nitrates in the boreal forest: formation via the NO ₃ -, OH- and O ₃ -induced oxidation of biogenic volatile organic compounds and ambient lifetimes. Atmospheric Chemistry and Physics, 2019, 19, 10391-10403.	1.9	28
25	Product formation from the gas-phase reactions of hydroxyl radicals and ozone with .betaphellandrene. Environmental Science & Technology, 1993, 27, 278-283.	4.6	27
26	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	0.8	27
27	Assessing critical load exceedances and ecosystem impacts of anthropogenic nitrogen and sulphur deposition at unmanaged forested catchments in Europe. Science of the Total Environment, 2021, 753, 141791.	3.9	26
28	Role of needle surface waxes in dynamic exchange of mono- and sesquiterpenes. Atmospheric Chemistry and Physics, 2016, 16, 7813-7823.	1.9	22
29	Induced defenses of Veronica spicata: Variability in herbivore-induced volatile organic compounds. Phytochemistry Letters, 2013, 6, 653-656.	0.6	18
30	Sesquiterpenes dominate monoterpenes in northern wetland emissions. Atmospheric Chemistry and Physics, 2020, 20, 7021-7034.	1.9	18
31	Optimisation of a thermal desorption–gas chromatography–mass spectrometry method for the analysis of monoterpenes, sesquiterpenes and diterpenes. Atmospheric Measurement Techniques, 2020, 13, 3543-3560.	1.2	18
32	Long-term dynamics of monoterpene synthase activities, monoterpene storage pools and emissions in boreal Scots pine. Biogeosciences, 2018, 15, 5047-5060.	1.3	16
33	Using in situ GC-MS for analysis of C ₂ –C ₇ volatile organicÂacidsÂinÂambientÂairÂofÂaÂborealÂforestÂsite. Atmospheric Measurement Techniques, 2017, 10, 281-2	1.2 289.	15
34	Trends and source apportionment of atmospheric heavy metals at a subarctic site during 1996–2018. Atmospheric Environment, 2020, 236, 117644.	1.9	13
35	Sesquiterpenes and oxygenated sesquiterpenes dominate the VOC (C ₅ –C ₂₀) emissions of downy birches. Atmospheric Chemistry and Physics, 2021, 21, 8045-8066.	1.9	13