Pierre Seneor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10462742/publications.pdf

Version: 2024-02-01

44 papers

3,565 citations

218677
26
h-index

265206 42 g-index

44 all docs 44 docs citations

44 times ranked 4758 citing authors

#	Article	IF	CITATIONS
1	Unveiling a Chemisorbed Crystallographically Heterogeneous Graphene/ <i>L</i>)1 ₀ -FePd Interface with a Robust and Perpendicular Orbital Moment. ACS Nano, 2022, 16, 4139-4151.	14.6	10
2	Organic–Inorganic Hybrid Interfaces for Spin Injection into Carbon Nanotubes and Graphene. Advanced Quantum Technologies, 2022, 5, .	3.9	1
3	Two-dimensional materials prospects for non-volatile spintronic memories. Nature, 2022, 606, 663-673.	27.8	116
4	Superconducting Proximity Effect in <i>d</i> â€Wave Cuprate/Graphene Heterostructures. Annalen Der Physik, 2022, 534, .	2.4	8
5	Band-Gap Landscape Engineering in Large-Scale 2D Semiconductor van der Waals Heterostructures. ACS Nano, 2021, 15, 7279-7289.	14.6	28
6	Synthesis of emerging 2D layered magnetic materials. Nanoscale, 2021, 13, 2157-2180.	5.6	35
7	WS ₂ 2D Semiconductor Down to Monolayers by Pulsed-Laser Deposition for Large-Scale Integration in Electronics and Spintronics Circuits. ACS Applied Nano Materials, 2020, 3, 7908-7916.	5.0	24
8	Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers. Nature Communications, 2020, 11, 5670.	12.8	37
9	Very Long Term Stabilization of a 2D Magnet down to the Monolayer for Device Integration. ACS Applied Electronic Materials, 2020, 2, 3508-3514.	4.3	11
10	Path to Overcome Material and Fundamental Obstacles in Spin Valves Based on MoS2 and Other Transition-Metal Dichalcogenides. Physical Review Applied, 2019, 12, .	3.8	13
11	Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films. Chemical Science, 2019, 10, 4038-4047.	7.4	36
12	Band-Structure Spin-Filtering in Vertical Spin Valves Based on Chemical Vapor Deposited WS ₂ . ACS Nano, 2019, 13, 14468-14476.	14.6	44
13	Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitride. ACS Nano, 2018, 12, 4712-4718.	14.6	88
14	Spin-Dependent Hybridization Phenomena in Organic and Molecular Spintronics Devices. Materials and Energy, 2018, , 63-92.	0.1	3
15	Tunable Klein-like tunnelling of high-temperature superconducting pairs into graphene. Nature Physics, 2018, 14, 25-29.	16.7	39
16	Molecular spintronics: the role of spin-dependent hybridization. Journal Physics D: Applied Physics, 2018, 51, 473001.	2.8	43
17	Spontaneous growth of 2D coordination polymers on functionalized ferromagnetic surfaces. Chemical Science, 2018, 9, 8819-8828.	7.4	6
18	Anisotropic Magnetoâ€Coulomb Properties of 2D–0D Heterostructure Single Electron Device. Advanced Materials, 2018, 30, e1802478.	21.0	17

#	Article	IF	CITATIONS
19	A Local Study of the Transport Mechanisms in MoS ₂ Layers for Magnetic Tunnel Junctions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30017-30021.	8.0	8
20	The molecular way. Nature Materials, 2017, 16, 505-506.	27.5	116
21	2D-MTJs: introducing 2D materials in magnetic tunnel junctions. Journal Physics D: Applied Physics, 2017, 50, 203002.	2.8	68
22	Engineering the magnetic coupling and anisotropy at the molecule–magnetic surface interface in molecular spintronic devices. Nature Communications, 2016, 7, 13646.	12.8	41
23	Stabilizing a graphene platform toward discrete components. Applied Physics Letters, 2016, 109, 253110.	3.3	16
24	Thirty Gigahertz Optoelectronic Mixing in Chemical Vapor Deposited Graphene. Nano Letters, 2016, 16, 2988-2993.	9.1	26
25	Measuring the nonlinear refractive index of graphene using the optical Kerr effect method. Optics Letters, 2016, 41, 3281.	3.3	92
26	Self-assembled monolayers based spintronics: from ferromagnetic surface functionalization to spin-dependent transport. Journal of Physics Condensed Matter, 2016, 28, 094010.	1.8	4
27	Unidirectional Spin-Dependent Molecule-Ferromagnet Hybridized States Anisotropy in Cobalt Phthalocyanine Based Magnetic Tunnel Junctions. Physical Review Letters, 2015, 114, 206603.	7.8	53
28	Recovering ferromagnetic metal surfaces to fully exploit chemistry in molecular spintronics. AIP Advances, 2015, 5 , .	1.3	9
29	Graphene spintronics: the European Flagship perspective. 2D Materials, 2015, 2, 030202.	4.4	243
30	Is spin transport through molecules really occurring in organic spin valves? A combined magnetoresistance and inelastic electron tunnelling spectroscopy study. Applied Physics Letters, 2015, 106, 082408.	3.3	10
31	Spinterface: Crafting spintronics at the molecular scale. MRS Bulletin, 2014, 39, 602-607.	3.5	74
32	Interdependency of Subsurface Carbon Distribution and Graphene–Catalyst Interaction. Journal of the American Chemical Society, 2014, 136, 13698-13708.	13.7	95
33	Sub-nanometer Atomic Layer Deposition for Spintronics in Magnetic Tunnel Junctions Based on Graphene Spin-Filtering Membranes. ACS Nano, 2014, 8, 7890-7895.	14.6	109
34	Spin transport in graphene: Fundamental concepts and practical implications. , 2012, , .		0
35	Graphene-Passivated Nickel as an Oxidation-Resistant Electrode for Spintronics. ACS Nano, 2012, 6, 10930-10934.	14.6	138
36	Unveiling Selfâ€Assembled Monolayers' Potential for Molecular Spintronics: Spin Transport at High Voltage. Advanced Materials, 2012, 24, 6429-6432.	21.0	37

PIERRE SENEOR

#	Article	IF	CITATION
37	Self-Assembled Monolayer-Functionalized Half-Metallic Manganite for Molecular Spintronics. ACS Nano, 2012, 6, 8753-8757.	14.6	32
38	The Parameter Space of Graphene Chemical Vapor Deposition on Polycrystalline Cu. Journal of Physical Chemistry C, 2012, 116, 22492-22501.	3.1	155
39	Highly efficient spin transport in epitaxial graphene on SiC. Nature Physics, 2012, 8, 557-561.	16.7	392
40	Unravelling the role of the interface for spin injection into organic semiconductors. Nature Physics, 2010, 6, 615-620.	16.7	559
41	Anisotropic magneto-Coulomb effects and magnetic single-electron-transistor action in aÂsingle nanoparticle. Nature Physics, 2009, 5, 920-924.	16.7	69
42	The 2007 Nobel Prize in Physics: Albert Fert and Peter Grünberg. , 2009, , 147-157.		6
43	Nanospintronics: when spintronics meets single electron physics. Journal of Physics Condensed Matter, 2007, 19, 165222.	1.8	88
44	Role of Metal-Oxide Interface in Determining the Spin Polarization of Magnetic Tunnel Junctions. Science, 1999, 286, 507-509.	12.6	566