Aa Arkadan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10462140/publications.pdf

Version: 2024-02-01

623188 676716 47 615 14 22 citations h-index g-index papers 47 47 47 278 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Particle Swarm Design Optimization of ALA Rotor SynRM for Traction Applications. IEEE Transactions on Magnetics, 2009, 45, 956-959.	1.2	34
2	EM-TFL environment for the design optimization of electromagnetic launchers. IEEE Transactions on Magnetics, 2005, 41, 1772-1775.	1.2	6
3	Electromagnetic fuzzy logic scheme for the characterization of ac actuators. IEEE Transactions on Magnetics, 2005, 41, 3985-3987.	1.2	О
4	ANN inverse mapping technique applied to electromagnetic design. IEEE Transactions on Magnetics, 2001, 37, 3584-3587.	1.2	14
5	Parameters evaluation of ALA synchronous reluctance motor drives. IEEE Transactions on Magnetics, 2000, 36, 1950-1955.	1.2	11
6	Performance prediction of SRM drive systems under normal and fault operating conditions using GA-based ANN method. IEEE Transactions on Magnetics, 2000, 36, 1945-1949.	1.2	35
7	A time-stepping coupled finite element-state space model for induction motor drives. I. Model formulation and machine parameter computation. IEEE Transactions on Energy Conversion, 1999, 14, 1465-1471.	3.7	41
8	Design optimization of a capacitive transducer for displacement measurement. IEEE Transactions on Magnetics, 1999, 35, 1869-1872.	1.2	10
9	A time-stepping coupled finite element-state space model for induction motor drives. II. Machine performance computation and verification. IEEE Transactions on Energy Conversion, 1999, 14, 1472-1478.	3.7	24
10	Computer aided models for the characterization of synchronous reluctance motor drive systems. IEEE Transactions on Energy Conversion, 1999, 14, 1459-1464.	3.7	6
11	Characterization of axially laminated anisotropic-rotor synchronous reluctance motors. IEEE Transactions on Energy Conversion, 1999, 14, 506-511.	3.7	14
12	Effects of converter excitation on the performance of axially laminated anisotropic synchronous reluctance motor drives. IEEE Transactions on Magnetics, 1999, 35, 1865-1868.	1.2	1
13	Identifying an inaccessible electrostatic source with gradient-based inverse problem methodology and boundary elements. IEEE Transactions on Magnetics, 1999, 35, 1578-1581.	1.2	2
14	Magnetic field and core loss evaluation of ALA-motor synchronous reluctance machines taking into account material anisotropy. IEEE Transactions on Magnetics, 1998, 34, 3507-3510.	1.2	12
15	Effects of anisotropy on the performance characteristics of an axially laminated anisotropic-rotor synchronous reluctance motor drive system. IEEE Transactions on Magnetics, 1998, 34, 3600-3603.	1.2	6
16	Effects of chopping on core losses and inductance profiles of SRM drives. IEEE Transactions on Magnetics, 1997, 33, 2105-2108.	1.2	8
17	Miniaturization of an electron device using inverse problem methodology. IEEE Transactions on Magnetics, 1996, 32, 1290-1293.	1.2	1
18	Dynamic stress in magnetic actuator computed by coupled structural and electromagnetic finite elements. IEEE Transactions on Magnetics, 1996, 32, 1046-1049.	1.2	21

#	Article	IF	CITATIONS
19	Shape optimization of PM devices using constrained gradient based inverse problem methodology. IEEE Transactions on Magnetics, 1996, 32, 1222-1225.	1.2	11
20	Effects of forced power transfer on high speed generator-load systems. IEEE Transactions on Energy Conversion, 1996, 11, 344-352.	3.7	5
21	NDT identification of a crack using ANNs with stochastic gradient descent. IEEE Transactions on Magnetics, 1995, 31, 1984-1987.	1.2	7
22	The coupled problem in switched reluctance motor drive systems during fault conditions. IEEE Transactions on Magnetics, 1994, 30, 3256-3259.	1.2	49
23	Switched reluctance motor drive systems dynamic performance prediction and experimental verification. IEEE Transactions on Energy Conversion, 1994, 9, 36-44.	3.7	46
24	Genetic algorithms for nondestructive testing in crack identification. IEEE Transactions on Magnetics, 1994, 30, 4320-4322.	1.2	25
25	Switched reluctance motor drive systems dynamic performance prediction under internal and external fault conditions. IEEE Transactions on Energy Conversion, 1994, 9, 45-52.	3.7	41
26	Effects of force fitting on the inductance profile of a switched reluctance motor. IEEE Transactions on Magnetics, 1993, 29, 2006-2009.	1.2	15
27	Nonlinear transient finite element modeling of a capacitor-discharge magnetizing fixture. IEEE Transactions on Magnetics, 1993, 29, 2051-2054.	1.2	13
28	Effects of toothless stator design on dynamic model parameters of permanent magnet generators. IEEE Transactions on Energy Conversion, 1993, 8, 243-250.	3.7	6
29	Three-dimensional nonlinear finite element modeling of a voltage source excited transformer feeding a rectifier load. IEEE Transactions on Magnetics, 1992, 28, 2265-2267.	1.2	10
30	Finite element modeling of a transformer feeding a rectified load: the coupled power electronics and nonlinear magnetic field problem. IEEE Transactions on Magnetics, 1991, 27, 5217-5219.	1.2	24
31	Computer-aided modeling of a rectified DC load-permanent magnet generator system with multiple damper windings in the natural abc frame of reference. IEEE Transactions on Energy Conversion, 1989, 4, 518-525.	3.7	15
32	Impact of load on winding inductances of permanent magnet generators with multiple damping circuits using energy perturbation. IEEE Transactions on Energy Conversion, 1988, 3, 880-889.	3.7	20
33	Computation of winding inductances of permanent magnet brushless DC motors with damper windings by energy perturbation. IEEE Transactions on Energy Conversion, 1988, 3, 705-713.	3.7	38
34	Modeling of transients in permanent magnet generators with multiple damping circuits using the natural abc frame of reference. IEEE Transactions on Energy Conversion, 1988, 3, 722-731.	3.7	21
35	Theoretical development and experimental verification of a DC-AC electronically rectified load-generator system model compatible with common network analysis software packages. IEEE Transactions on Energy Conversion, 1988, 3, 123-131.	3.7	10
36	Computation Of Dynamic Model Parameters Of Permanent Magnet Synchronous Generators With Multiple Damping Circuits., 0,,.		1

3

#	Article	IF	CITATIONS
37	Impact Of Addition Of Rotor Damping Circuits On Dynamic Performance Of Permanent Magnet Synchronous Generators. , 0, , .		1
38	Three-dimensional nonlinear finite element modeling of a voltage source excited transformer feeding a rectifier load. , 0, , .		2
39	A time-stepping coupled finite element-state space model for induction motor drives. II. Machine performance computation and verification., 0,,.		O
40	Computer aided models for the characterization of synchronous reluctance motor drive systems. , 0, , .		0
41	Switched reluctance motor control with artificial neural networks., 0,,.		2
42	A time-stepping coupled finite element-state space model for induction motor drives. I. Model formulation and machine parameter computation. , 0, , .		O
43	A Novel Approach for Characterization and Optimization of ALA Rotor Synchronous Reluctance Motor Drives for Traction Applications. , 0, , .		1
44	Characterization of Stand Alone AC Generators during No-Break Power Transfer using AI-EM Based Approach. , 0, , .		0
45	Design Optimization of ALA Rotor SynRM Drives using T-Al-EM Environment. , 0, , .		O
46	R-FL-C Model for Design Optimization of PM Generators. , 0, , .		1
47	An algebraic approach to prediction of the performance of PM electric machines during sustained fault conditions., 0,,.		5