Peter B Becker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1046162/publications.pdf

Version: 2024-02-01

157 papers 14,672 citations

59
h-index

20307 116 g-index

170 all docs

170 docs citations

170 times ranked

10923 citing authors

#	Article	IF	CITATIONS
1	Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature, 1996, 382, 420-425.	13.7	921
2	Histone acetylation: a switch between repressive and permissive chromatin. EMBO Reports, 2002, 3, 224-229.	2.0	813
3	ATP-Dependent Nucleosome Remodeling. Annual Review of Biochemistry, 2002, 71, 247-273.	5.0	681
4	ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature, 1994, 367, 525-532.	13.7	663
5	Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature, 1997, 388, 598-602.	13.7	484
6	Activation of Transcription through Histone H4 Acetylation by MOF, an Acetyltransferase Essential for Dosage Compensation in Drosophila. Molecular Cell, 2000, 5, 367-375.	4.5	429
7	Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell, 1990, 63, 1085-1097.	13.5	372
8	Genomic footprinting reveals cell type-specific DNA binding of ubiquitous factors. Cell, 1987, 51, 435-443.	13.5	364
9	Chromodomains are protein–RNA interaction modules. Nature, 2000, 407, 405-409.	13.7	364
10	In vivo protein–DNA interactions in a glucocorticoid response element require the presence of the hormone. Nature, 1986, 324, 686-688.	13.7	346
11	Nucleosome Movement by CHRAC and ISWI without Disruption or trans-Displacement of the Histone Octamer. Cell, 1999, 97, 843-852.	13.5	314
12	A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage. Molecular and Cellular Biology, 2000, 20, 1206-1218.	1.1	294
13	Nucleosome Remodeling and Epigenetics. Cold Spring Harbor Perspectives in Biology, 2013, 5, a017905-a017905.	2.3	255
14	Crystal Structure and Functional Analysis of a Nucleosome Recognition Module of the Remodeling Factor ISWI. Molecular Cell, 2003, 12, 449-460.	4.5	239
15	The histone H4 acetyltransferase MOF uses a C2HC zinc finger for substrate recognition. EMBO Reports, 2001, 2, 113-118.	2.0	231
16	The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO Journal, 2002, 21, 6865-6873.	3. 5	219
17	ISWI Is an ATP-Dependent Nucleosome Remodeling Factor. Molecular Cell, 1999, 3, 239-245.	4.5	205
18	Dosage compensation: the beginning and end of generalization. Nature Reviews Genetics, 2007, 8, 47-57.	7.7	204

#	Article	IF	Citations
19	Critical Role for the Histone H4 N Terminus in Nucleosome Remodeling by ISWI. Molecular and Cellular Biology, 2001, 21, 875-883.	1.1	202
20	Modulation of ISWI function by siteâ€specific histone acetylation. EMBO Reports, 2002, 3, 242-247.	2.0	202
21	Physical and functional association of SU(VAR)3â€9 and HDAC1 inDrosophila. EMBO Reports, 2001, 2, 915-919.	2.0	186
22	Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. Journal of Cell Science, 2001, 114, 2561-2568.	1.2	172
23	The many colours of chromodomains. BioEssays, 2004, 26, 133-140.	1.2	161
24	The Chromosomal High-Affinity Binding Sites for the Drosophila Dosage Compensation Complex. PLoS Genetics, 2008, 4, e1000302.	1.5	161
25	Active promoters and insulators are marked by the centrosomal protein 190. EMBO Journal, 2009, 28, 877-888.	3.5	145
26	Active promoters give rise to false positive †Phantom Peaks†in ChIP-seq experiments. Nucleic Acids Research, 2015, 43, 6959-6968.	6.5	144
27	ATP-dependent nucleosome remodelling: factors and functions. Journal of Cell Science, 2004, 117, 3707-3711.	1.2	143
28	Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes and Development, 2006, 20, 858-870.	2.7	142
29	A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Research, 2002, 30, 649-655.	6.5	137
30	The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization. EMBO Journal, 2002, 21, 2430-2440.	3.5	132
31	Chromatin-remodeling factors: machines that regulate?. Current Opinion in Cell Biology, 1998, 10, 346-353.	2.6	128
32	ISWI Induces Nucleosome Sliding on Nicked DNA. Molecular Cell, 2001, 8, 1085-1092.	4.5	125
33	Nucleosome remodeling: one mechanism, many phenomena?. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2004, 1677, 58-63.	2.4	123
34	Global and Specific Responses of the Histone Acetylome to Systematic Perturbation. Molecular Cell, 2015, 57, 559-571.	4.5	119
35	Life span extension by targeting a link between metabolism and histone acetylation in <i>Drosophila</i> . EMBO Reports, 2016, 17, 455-469.	2.0	116
36	Electrostatic Mechanism of Nucleosome Spacing. Journal of Molecular Biology, 1995, 252, 305-313.	2.0	115

#	Article	IF	CITATIONS
37	Two-Step Synergism between the Progesterone Receptor and the DNA-Binding Domain of Nuclear Factor 1 on MMTV Minichromosomes. Molecular Cell, 1999, 4, 45-54.	4.5	114
38	Functional integration of the histone acetyltransferase MOF into the dosage compensation complex. EMBO Journal, 2004, 23, 2258-2268.	3.5	108
39	Nucleosome Binding by the Bromodomain and PHD Finger of the Transcriptional Cofactor p300. Journal of Molecular Biology, 2004, 337, 773-788.	2.0	108
40	ACF1 improves the effectiveness of nucleosome mobilization by ISWI through PHD–histone contacts. EMBO Journal, 2004, 23, 4029-4039.	3.5	102
41	NEW EMBO MEMBER'S REVIEW: Nucleosome sliding: facts and fiction. EMBO Journal, 2002, 21, 4749-4753.	3.5	99
42	Functional Delineation of Three Groups of the ATP-dependent Family of Chromatin Remodeling Enzymes. Journal of Biological Chemistry, 2000, 275, 18864-18870.	1.6	95
43	Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Current Opinion in Genetics and Development, 2006, 16, 151-156.	1.5	94
44	Combined Use of RNAi and Quantitative Proteomics to Study Gene Function in Drosophila. Molecular Cell, 2008, 31, 762-772.	4.5	93
45	Nucleosome sliding mechanisms: new twists in a looped history. Nature Structural and Molecular Biology, 2013, 20, 1026-1032.	3.6	92
46	The Drosophila MSL complex activates the transcription of target genes. Genes and Development, 2005, 19, 2284-2288.	2.7	91
47	Beads on a string—nucleosome array arrangements and folding of the chromatin fiber. Nature Structural and Molecular Biology, 2020, 27, 109-118.	3.6	86
48	ATP-Dependent roX RNA Remodeling by the Helicase maleless Enables Specific Association of MSL Proteins. Molecular Cell, 2013, 51, 174-184.	4.5	84
49	The establishment of active promoters in chromatin. BioEssays, 1994, 16, 541-547.	1.2	81
50	Different chromatin interfaces of the <i>Drosophila</i> dosage compensation complex revealed by high-shear ChIP-seq. Genome Research, 2013, 23, 473-485.	2.4	78
51	The ATPase domain of ISWI is an autonomous nucleosome remodeling machine. Nature Structural and Molecular Biology, 2013, 20, 82-89.	3.6	77
52	Recruitment of the Nucleolar Remodeling Complex NoRC Establishes Ribosomal DNA Silencing in Chromatin. Molecular and Cellular Biology, 2004, 24, 1791-1798.	1.1	76
53	Sequence-Specific Targeting of Drosophila roX Genes by the MSL Dosage Compensation Complex. Molecular Cell, 2003, 11, 977-986.	4.5	73
54	The Histone Fold Subunits of Drosophila CHRAC Facilitate Nucleosome Sliding through Dynamic DNA Interactions. Molecular and Cellular Biology, 2005, 25, 9886-9896.	1.1	71

#	Article	IF	Citations
55	Targeting Determinants of Dosage Compensation in Drosophila. PLoS Genetics, 2006, 2, e5.	1.5	71
56	Genome-wide measurement of local nucleosome array regularity and spacing by nanopore sequencing. Nature Structural and Molecular Biology, 2018, 25, 894-901.	3.6	68
57	Chapter 12 Chromatin Assembly Extracts from Drosophila Embryos. Methods in Cell Biology, 1994, 44, 207-223.	0.5	67
58	Dosage compensation and the global re-balancing of aneuploid genomes. Genome Biology, 2010, 11, 216.	13.9	67
59	Structure of the RNA Helicase MLE Reveals the Molecular Mechanisms for Uridine Specificity and RNA-ATP Coupling. Molecular Cell, 2015, 60, 487-499.	4.5	67
60	Tramtrack69 interacts with the dMiâ€2 subunit of theDrosophilaNuRD chromatin remodelling complex. EMBO Reports, 2001, 2, 1089-1094.	2.0	65
61	The DNA binding CXC domain of MSL2 is required for faithful targeting the Dosage Compensation Complex to the X chromosome. Nucleic Acids Research, 2010, 38, 3209-3221.	6.5	65
62	PionX sites mark the X chromosome for dosage compensation. Nature, 2016, 537, 244-248.	13.7	65
63	A finger on the mark. Nature, 2006, 442, 31-32.	13.7	64
64	The MOF-containing NSL complex associates globally with housekeeping genes, but activates only a defined subset. Nucleic Acids Research, 2012, 40, 1509-1522.	6.5	64
65	The Activation Potential of MOF Is Constrained for Dosage Compensation. Molecular Cell, 2010, 38, 815-826.	4.5	63
66	Role for hACF1 in the G2/M damage checkpoint. Nucleic Acids Research, 2011, 39, 8445-8456.	6.5	62
67	Ran Binds to Chromatin by Two Distinct Mechanisms. Current Biology, 2002, 12, 1151-1156.	1.8	58
68	Heat Shock Factor Increases the Reinitiation Rate from Potentiated Chromatin Templates. Molecular and Cellular Biology, 1998, 18, 361-367.	1.1	56
69	The Novel Transcription Factor e(y)2 Interacts with TAF II 40 and Potentiates Transcription Activation on Chromatin Templates. Molecular and Cellular Biology, 2001, 21, 5223-5231.	1.1	55
70	The variant histone H2A.V of Drosophilaâ€"three roles, two guises. Chromosoma, 2013, 122, 245-258.	1.0	55
71	Global Analysis of the Relationship between JIL-1 Kinase and Transcription. PLoS Genetics, 2011, 7, e1001327.	1.5	55
72	Lifting a chromosome: dosage compensation in Drosophila melanogaster. FEBS Letters, 2004, 567, 8-14.	1.3	54

#	Article	IF	CITATIONS
73	The dosage compensation complex shapes the conformation of the X chromosome in <i>Drosophila (i). Genes and Development, 2009, 23, 2490-2495.</i>	2.7	54
74	Solid phase DNase I footprinting: quick and versatile. Nucleic Acids Research, 1994, 22, 1511-1512.	6.5	52
75	Dynamic chromatin: concerted nucleosome remodelling and acetylation. Biological Chemistry, 2005, 386, 745-51.	1.2	51
76	The MRG Domain Mediates the Functional Integration of MSL3 into the Dosage Compensation Complex. Molecular and Cellular Biology, 2005, 25, 5947-5954.	1.1	48
77	Dual regulation of theDrosophillahsp26 promoterin vitro. Nucleic Acids Research, 1995, 23, 2479-2487.	6.5	47
78	The Effect of Nucleosome Phasing Sequences and DNA Topology on Nucleosome Spacing. Journal of Molecular Biology, 1996, 260, 1-8.	2.0	47
79	The <i>Drosophila</i> Polycomb Protein Interacts with Nucleosomal Core Particles In Vitro via Its Repression Domain. Molecular and Cellular Biology, 1999, 19, 8451-8460.	1.1	47
80	ACF catalyses chromatosome movements in chromatin fibres. EMBO Journal, 2008, 27, 817-826.	3.5	45
81	Probing the Conformation of the ISWI ATPase Domain With Genetically Encoded Photoreactive Crosslinkers and Mass Spectrometry. Molecular and Cellular Proteomics, 2012, 11, M111.012088.	2.5	45
82	Rapid Purification of Recombinant Histones. PLoS ONE, 2014, 9, e104029.	1.1	45
83	HMG-D and Histone H1 Interplay during Chromatin Assembly and Early Embryogenesis. Journal of Biological Chemistry, 2001, 276, 37569-37576.	1.6	40
84	Site-specific acetylation of ISWI by GCN5. BMC Molecular Biology, 2007, 8, 73.	3.0	40
85	Structure-function analysis of the RNA helicase maleless. Nucleic Acids Research, 2008, 36, 950-962.	6.5	40
86	The bifunctional protein DCoH modulates interactions of the homeodomain transcription factor HNF1 with nucleic acids 1 1Edited by M. Yaniv. Journal of Molecular Biology, 1997, 265, 20-29.	2.0	39
87	Chromosome topology guides the <i>Drosophila</i> Dosage Compensation Complex for target gene activation. EMBO Reports, 2017, 18, 1854-1868.	2.0	39
88	Stable chromosomal association of MSL2 defines a dosage-compensated nuclear compartment. Chromosoma, 2005, 114, 352-364.	1.0	34
89	Cumulative contributions of weak DNA determinants to targeting the Drosophila dosage compensation complex. Nucleic Acids Research, 2007, 35, 3561-3572.	6.5	34
90	Drosophila ISWI Regulates the Association of Histone H1 With Interphase Chromosomes <i>in Vivo</i> Genetics, 2009, 182, 661-669.	1.2	34

#	Article	IF	CITATIONS
91	Modifications of the Histone N-Terminal Domains: Evidence for an "Epigenetic Code"?. Molecular Biotechnology, 2001, 17, 01-14.	1.3	33
92	High levels of histone <scp>H</scp> 3 acetylation at the <scp>CMV</scp> promoter are predictive of stable expression in Chinese hamster ovary cells. Biotechnology Progress, 2016, 32, 776-786.	1.3	33
93	The glutamine-rich domain of the Drosophila GAGA factor is necessary for amyloid fibre formation in vitro , but not for chromatin remodelling 1 1Edited by M. Yaniv. Journal of Molecular Biology, 1999, 285, 527-544.	2.0	32
94	Transcription modulation chromosome-wide: universal features and principles of dosage compensation in worms and flies. Current Opinion in Genetics and Development, 2011, 21, 147-153.	1.5	31
95	MSL2 Combines Sensor and Effector Functions in Homeostatic Control of the Drosophila Dosage Compensation Machinery. Molecular Cell, 2012, 48, 647-654.	4.5	31
96	Genome-wide Rules of Nucleosome Phasing in Drosophila. Molecular Cell, 2018, 72, 661-672.e4.	4.5	31
97	Assembly of MMTV promoter minichromosomes with positioned nucleosomes precludes NF1 access but not restriction enzyme cleavage. Nucleic Acids Research, 1998, 26, 3657-3666.	6.5	30
98	The Histone-Fold Protein CHRAC14 Influences Chromatin Composition in Response to DNA Damage. Cell Reports, 2014, 7, 321-330.	2.9	30
99	UNR facilitates the interaction of MLE with the lncRNA roX2 during Drosophila dosage compensation. Nature Communications, 2014, 5, 4762.	5.8	30
100	Factor cooperation for chromosome discrimination in <i>Drosophila</i> . Nucleic Acids Research, 2019, 47, 1706-1724.	6.5	30
101	An improved protocol for genomic sequencing and footprinting by ligation-mediated PCR. Nucleic Acids Research, 1993, 21, 2779-2781.	6.5	29
102	Nucleosome Remodeler SNF2L Suppresses Cell Proliferation and Migration and Attenuates Wnt Signaling. Molecular and Cellular Biology, 2012, 32, 2359-2371.	1.1	29
103	Structural basis of X chromosome DNA recognition by the MSL2 CXC domain during <i>Drosophila</i> dosage compensation. Genes and Development, 2014, 28, 2652-2662.	2.7	28
104	The Architecture of the Heat-inducibleDrosophila hsp27Promoter in Nuclei. Journal of Molecular Biology, 1996, 256, 249-263.	2.0	26
105	Dosage compensation in flies: Mechanism, models, mystery. FEBS Letters, 2005, 579, 3258-3263.	1.3	26
106	CHRAC/ACF contribute to the repressive ground state of chromatin. Life Science Alliance, 2018, 1, e201800024.	1.3	26
107	Developmental role for ACF1-containing nucleosome remodellers in chromatin organisation. Development (Cambridge), 2010, 137, 3513-3522.	1.2	25
108	Nucleosome dynamics and epigenetic stability. Essays in Biochemistry, 2010, 48, 63-74.	2.1	25

#	Article	IF	CITATIONS
109	Gene Regulation by Histone H1: New Links to DNA Methylation. Cell, 2005, 123, 1178-1179.	13.5	24
110	ISWI Remodelling of Physiological Chromatin Fibres Acetylated at Lysine 16 of Histone H4. PLoS ONE, 2014, 9, e88411.	1.1	24
111	A Nucleosome Sliding Assay for Chromatin Remodeling Factors. Methods in Enzymology, 2003, 377, 344-353.	0.4	21
112	Phosphorylation of SU(VAR)3–9 by the Chromosomal Kinase JIL-1. PLoS ONE, 2010, 5, e10042.	1.1	21
113	Roles of long, non-coding RNA in chromosome-wide transcription regulation: Lessons from two dosage compensation systems. Biochimie, 2012, 94, 1490-1498.	1.3	20
114	Combinatorial Histone Acetylation Patterns Are Generated by Motif-Specific Reactions. Cell Systems, 2016, 2, 49-58.	2.9	19
115	ATP-dependent chromatosome remodeling. Biological Chemistry, 2008, 389, 345-352.	1.2	18
116	DNA sequence and the organization of chromosomal domains. Current Opinion in Genetics and Development, 2008, 18, 175-180.	1.5	18
117	JASPer controls interphase histone H3S10 phosphorylation by chromosomal kinase JIL-1 in Drosophila. Nature Communications, 2019, 10, 5343.	5.8	18
118	Transcription factor-mediated chromatin remodelling: mechanisms and models. FEBS Letters, 1995, 369, 118-121.	1.3	17
119	Biochemical Analysis of Chromatin Structure and Function UsingDrosophilaEmbryo Extracts. Methods, 1997, 12, 28-35.	1.9	17
120	Acetylation increases access of remodelling complexes to their nucleosome targets to enhance initiation of $V(D)J$ recombination. Nucleic Acids Research, 2007, 35, 6311-6321.	6.5	17
121	Splice variants of the SWR1-type nucleosome remodeling factor Domino have distinct functions during <i>Drosophila melanogaster</i>) oogenesis. Development (Cambridge), 2016, 143, 3154-3167.	1.2	17
122	Structure, dynamics and roX2-lncRNA binding of tandem double-stranded RNA binding domains dsRBD1,2 of Drosophila helicase Maleless. Nucleic Acids Research, 2019, 47, 4319-4333.	6.5	17
123	Variation on a theme: Evolutionary strategies for H2A.Z exchange by SWR1-type remodelers. Current Opinion in Cell Biology, 2021, 70, 1-9.	2.6	17
124	A role for tuned levels of nucleosome remodeler subunit ACF1 during Drosophila oogenesis. Developmental Biology, 2016, 411, 217-230.	0.9	16
125	Comment on " <i>Drosophila</i> Dosage Compensation Involves Enhanced Pol II Recruitment to Male X-Linked Promoters― Science, 2013, 340, 273-273.	6.0	15
126	Nucleosome remodelers on track. Nature Structural and Molecular Biology, 2005, 12, 732-733.	3.6	14

#	Article	IF	Citations
127	Drosophila SWR1 and NuA4 complexes are defined by DOMINO isoforms. ELife, 2020, 9, .	2.8	14
128	Drosophilachromatin and transcription. Seminars in Cell Biology, 1995, 6, 185-190.	3.5	12
129	Analysis of modulators of chromatin structure in Drosophila. Methods in Enzymology, 1999, 304, 742-757.	0.4	12
130	Preparation of Chromatin Assembly Extracts from Preblastoderm Drosophila Embryos. , 1999, 119, 187-194.		12
131	Two-step mechanism for selective incorporation of lncRNA into a chromatin modifier. Nucleic Acids Research, 2020, 48, 7483-7501.	6.5	12
132	Divergent evolution toward sex chromosome-specific gene regulation in <i>Drosophila </i> . Genes and Development, 2021, 35, 1055-1070.	2.7	12
133	A Solid-Phase Approach for the Analysis of Reconstituted Chromatin. , 1999, 119, 195-206.		11
134	Ubiquitylation of the acetyltransferase MOF in Drosophila melanogaster. PLoS ONE, 2017, 12, e0177408.	1.1	11
135	Solid phase technology improves coupled gel shift/footprinting analysis. Nucleic Acids Research, 1997, 25, 453-454.	6.5	10
136	Preparation of Chromatin Assembly Extracts from Preblastoderm Drosophila Embryos. Methods in Molecular Biology, 2009, 523, 1-10.	0.4	10
137	Form and function of dosageâ€compensated chromosomes – a chickenâ€andâ€egg relationship. BioEssays, 2010, 32, 709-717.	1.2	9
138	Progressive dosage compensation during <i>Drosophila</i> embryogenesis is reflected by gene arrangement. EMBO Reports, 2019, 20, e48138.	2.0	9
139	[40] Footprinting of DNA-binding proteins in intact cells. Methods in Enzymology, 1993, 218, 568-587.	0.4	6
140	Structural and Functional Analysis of Chromatin Assembled from Defined Histones. Methods, 1998, 15, 343-353.	1.9	6
141	Reconstitution and Analysis of Hyperacetylated Chromatin. , 1999, 119, 207-218.		6
142	Genomic Footprinting ofDrosophilaEmbryo Nuclei by Linker Tag Selection LM-PCR. Methods, 1997, 11, 171-179.	1.9	5
143	Cell-free genomics reveal intrinsic, cooperative and competitive determinants of chromatin interactions. Nucleic Acids Research, 2021, 49, 7602-7617.	6.5	5
144	LncRNA <i>RUS</i> shapes the gene expression program towards neurogenesis. Life Science Alliance, 2022, 5, e202201504.	1.3	5

#	Article	IF	CITATIONS
145	Computational study of remodeling in a nucleosomal array. European Physical Journal E, 2015, 38, 85.	0.7	4
146	A Drosophila cell-free system that senses DNA breaks and triggers phosphorylation signalling. Nucleic Acids Research, 2019, 47, 7444-7459.	6.5	4
147	Analysis of Activator-Dependent Transcription Reinitiation In Vitro. Methods in Enzymology, 2003, 370, 487-501.	0.4	3
148	A Defined In Vitro System to Study ATP-Dependent Remodeling of Short Chromatin Fibers. Methods in Molecular Biology, 2012, 833, 255-270.	0.4	3
149	Wolfram Hörz 1944–2005. Cell, 2006, 124, 13-14.	13.5	2
150	Analysis of Reconstituted Chromatin Using a Solid-Phase Approach. Methods in Molecular Biology, 2009, 523, 11-25.	0.4	1
151	Determination of Unknown Genomic Sequences Without Cloning. , 1996, 65, 119-132.		0
152	MOF, an Acetyl Transferase Involved in Dosage Compensation in Drosophila, Uses a CCHC Finger for Substrate Recognition., 2005,, 247-251.		0
153	Beads-on-a-String on a Bead: Reconstitution and Analysis of Chromatin on a Solid Support. Methods in Molecular Biology, 2015, 1288, 1-14.	0.4	0
154	Identification of Intrinsic RNA Binding Specificity of Purified Proteins by in vitro RNA Immunoprecipitation (vitRIP). Bio-protocol, 2021, 11, e3946.	0.2	0
155	Determination of Unknown Genomic Sequences Without Cloning. , 2003, , 373-383.		0
156	Nucleosome Remodelling and Epigenome Diversification. Research and Perspectives in Neurosciences, 2012, , 1-9.	0.4	0
157	Loss of nucleosome remodelers CHRAC/ACF does not sensitize early embryos to X-rays. MicroPublication Biology, 2020, 2020, .	0.1	0