
Yaojie Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10460319/publications.pdf Version: 2024-02-01

VAQUELEI

#	Article	IF	CITATIONS
1	Amorphous Bimetallic Oxide–Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn–Air Batteries. Advanced Materials, 2017, 29, 1701410.	11.1	243
2	Electrocatalyzing S Cathodes <i>via</i> Multisulfiphilic Sites for Superior Room-Temperature Sodium–Sulfur Batteries. ACS Nano, 2020, 14, 7259-7268.	7.3	100
3	Hydrogen evolution reaction activity of nickel phosphide is highly sensitive to electrolyte pH. Journal of Materials Chemistry A, 2017, 5, 20390-20397.	5.2	98
4	In situ growth of Ni–Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation. Journal of Materials Chemistry, 2012, 22, 13925.	6.7	57
5	Metal-free bifunctional carbon electrocatalysts derived from zeolitic imidazolate frameworks for efficient water splitting. Materials Chemistry Frontiers, 2018, 2, 102-111.	3.2	57
6	Continuous Carbon Channels Enable Full Naâ€lon Accessibility for Superior Roomâ€Temperature Na–S Batteries. Advanced Materials, 2022, 34, e2108363.	11.1	49
7	Architecting Freestanding Sulfur Cathodes for Superior Roomâ€Temperature Na–S Batteries. Advanced Functional Materials, 2021, 31, 2102280.	7.8	46
8	Activating Inert Surface Pt Single Atoms via Subsurface Doping for Oxygen Reduction Reaction. Nano Letters, 2021, 21, 7970-7978.	4.5	33
9	Understanding Sulfur Redox Mechanisms in Different Electrolytes for Room-Temperature Na–S Batteries. Nano-Micro Letters, 2021, 13, 121.	14.4	31
10	Electrolytes/Interphases: Enabling Distinguishable Sulfur Redox Processes in Roomâ€Temperature Sodiumâ€6ulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	29
11	Atomic Cobalt Vacancy luster Enabling Optimized Electronic Structure for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2101797.	7.8	26
12	Highly selective oxidation of alcohols catalyzed by Cu(II)-Schiff base-SBA-15 with hydrogen peroxide in water. Journal of Porous Materials, 2013, 20, 277-284.	1.3	24
13	Germanene Nanosheets: Achieving Superior Sodiumâ€lon Storage via Pseudointercalation Reactions. Small Structures, 2021, 2, 2100041.	6.9	20
14	Streamline Sulfur Redox Reactions to Achieve Efficient Roomâ€Temperature Sodium–Sulfur Batteries. Angewandte Chemie, 2022, 134, .	1.6	3