Cristina Malagelada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1045880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential Phosphoâ€Signatures in Blood Cells Identify <scp><i>LRRK2</i> G2019S</scp> Carriers in Parkinson's Disease. Movement Disorders, 2022, 37, 1004-1015.	2.2	9
2	RTP801/REDD1 Is Involved in Neuroinflammation and Modulates Cognitive Dysfunction in Huntington's Disease. Biomolecules, 2022, 12, 34.	1.8	2
3	RTP801/REDD1 contributes to neuroinflammation severity and memory impairments in Alzheimer's disease. Cell Death and Disease, 2021, 12, 616.	2.7	19
4	R1441G but not G2019S mutation enhances LRRK2 mediated Rab10 phosphorylation in human peripheral blood neutrophils. Acta Neuropathologica, 2021, 142, 475-494.	3.9	44
5	RTP801 regulates motor cortex synaptic transmission and learning. Experimental Neurology, 2021, 342, 113755.	2.0	4
6	Synaptic RTP801 contributes to motor-learning dysfunction in Huntington's disease. Cell Death and Disease, 2020, 11, 569.	2.7	10
7	MTOR Pathway-Based Discovery of Genetic Susceptibility to L-DOPA-Induced Dyskinesia in Parkinson's Disease Patients. Molecular Neurobiology, 2019, 56, 2092-2100.	1.9	17
8	Increased translation as a novel pathogenic mechanism in Huntington's disease. Brain, 2019, 142, 3158-3175.	3.7	43
9	SNCA and mTOR Pathway Single Nucleotide Polymorphisms Interact to Modulate the Age at Onset of Parkinson's Disease. Movement Disorders, 2019, 34, 1333-1344.	2.2	21
10	Increased Levels of Rictor Prevent Mutant Huntingtin-Induced Neuronal Degeneration. Molecular Neurobiology, 2018, 55, 7728-7742.	1.9	12
11	Chelerythrine promotes Ca2+-dependent calpain activation in neuronal cells in a PKC-independent manner. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 922-935.	1.1	11
12	RTP801 Is Involved in Mutant Huntingtin-Induced Cell Death. Molecular Neurobiology, 2016, 53, 2857-2868.	1.9	19
13	Loss of NEDD4 contributes to RTP801 elevation and neuron toxicity: implications for Parkinson's disease. Oncotarget, 2016, 7, 58813-58831.	0.8	21
14	Pharmacogenetic predictor of extrapyramidal symptoms induced by antipsychotics: Multilocus interaction in the mTOR pathway. European Neuropsychopharmacology, 2015, 25, 51-59.	0.3	30
15	RTP801/REDD1: a stress coping regulator that turns into a troublemaker in neurodegenerative disorders. Frontiers in Cellular Neuroscience, 2014, 8, 313.	1.8	45
16	Parkin loss of function contributes to RTP801 elevation and neurodegeneration in Parkinson's disease. Cell Death and Disease, 2014, 5, e1364-e1364.	2.7	40
17	ATF4 Protects Against Neuronal Death in Cellular Parkinson's Disease Models by Maintaining Levels of Parkin. Journal of Neuroscience, 2013, 33, 2398-2407.	1.7	106
18	Akt as a Victim, Villain and Potential Hero in Parkinson's Disease Pathophysiology and Treatment. Cellular and Molecular Neurobiology, 2011, 31, 969-978.	1.7	62

CRISTINA MALAGELADA

#	Article	IF	CITATIONS
19	RTP801/REDD1 Regulates the Timing of Cortical Neurogenesis and Neuron Migration. Journal of Neuroscience, 2011, 31, 3186-3196.	1.7	55
20	Rapamycin Protects against Neuron Death in <i>In Vitro</i> and <i>In Vivo</i> Models of Parkinson's Disease. Journal of Neuroscience, 2010, 30, 1166-1175.	1.7	409
21	Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. Journal of Clinical Investigation, 2009, 119, 2925-2941.	3.9	367
22	Activation of caspase-8 by tumour necrosis factor receptor 1 is necessary for caspase-3 activation and apoptosis in oxygen–glucose deprived cultured cortical cells. Neurobiology of Disease, 2009, 35, 438-447.	2.1	41
23	Cell death pathways in Parkinson's disease: proximal triggers, distal effectors, and final steps. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 478-500.	2.2	247
24	RTP801 Is Induced in Parkinson's Disease and Mediates Neuron Death by Inhibiting Akt Phosphorylation/Activation. Journal of Neuroscience, 2008, 28, 14363-14371.	1.7	201
25	PC12 Cells as a model for parkinson's disease research. , 2008, , 375-387.		16
26	17β-estradiol does not protect cerebellar granule cells from excitotoxicity or apoptosis. Journal of Neurochemistry, 2007, 102, 354-364.	2.1	9
27	N-Methyl-DD-aspartate Blocks Activation of JNK and Mitochondrial Apoptotic Pathway Induced by Potassium Deprivation in Cerebellar Granule Cells. Journal of Biological Chemistry, 2006, 281, 6801-6812.	1.6	25
28	RTP801 Is Elevated in Parkinson Brain Substantia Nigral Neurons and Mediates Death in Cellular Models of Parkinson's Disease by a Mechanism Involving Mammalian Target of Rapamycin Inactivation. Journal of Neuroscience, 2006, 26, 9996-10005.	1.7	159
29	Brief exposure to NMDA produces long-term protection of cerebellar granule cells from apoptosis. European Journal of Neuroscience, 2005, 21, 827-840.	1.2	24
30	Puma and p53 Play Required Roles in Death Evoked in a Cellular Model of Parkinson Disease. Neurochemical Research, 2005, 30, 839-845.	1.6	71
31	Contribution of caspase-mediated apoptosis to the cell death caused by oxygen–glucose deprivation in cortical cell cultures. Neurobiology of Disease, 2005, 20, 27-37.	2.1	47
32	Histamine H 2 -Receptor Antagonist Ranitidine Protects Against Neural Death Induced by Oxygen-Glucose Deprivation. Stroke, 2004, 35, 2396-2401.	1.0	26