
Youngjin Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10458608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of Monodisperse Spherical Nanocrystals. Angewandte Chemie - International Edition, 2007, 46, 4630-4660.	7.2	1,751
2	Designed Synthesis of Atom-Economical Pd/Ni Bimetallic Nanoparticle-Based Catalysts for Sonogashira Coupling Reactions. Journal of the American Chemical Society, 2004, 126, 5026-5027.	6.6	465
3	Synthesis of Monodisperse Palladium Nanoparticles. Nano Letters, 2003, 3, 1289-1291.	4.5	403
4	A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation. Angewandte Chemie - International Edition, 2007, 46, 7039-7043.	7.2	303
5	Generalized Fabrication of Multifunctional Nanoparticle Assemblies on Silica Spheres. Angewandte Chemie - International Edition, 2006, 45, 4789-4793.	7.2	227
6	Facile Synthesis of Various Phosphine-Stabilized Monodisperse Palladium Nanoparticles through the Understanding of Coordination Chemistry of the Nanoparticles. Nano Letters, 2004, 4, 1147-1151.	4.5	226
7	Facile Aqueous-Phase Synthesis of Uniform Palladium Nanoparticles of Various Shapes and Sizes. Small, 2007, 3, 255-260.	5.2	164
8	Simple and Generalized Synthesis of Oxideâ^'Metal Heterostructured Nanoparticles and their Applications in Multimodal Biomedical Probes. Journal of the American Chemical Society, 2008, 130, 15573-15580.	6.6	162
9	Simple synthesis of Pd–Fe3O4 heterodimer nanocrystals and their application as a magnetically recyclable catalyst for Suzuki cross-coupling reactions. Physical Chemistry Chemical Physics, 2011, 13, 2512.	1.3	126
10	Simple one-pot synthesis of Rh–Fe3O4 heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes. Chemical Communications, 2011, 47, 3601.	2.2	112
11	pH-Sensitive Pt Nanocluster Assembly Overcomes Cisplatin Resistance and Heterogeneous Stemness of Hepatocellular Carcinoma. ACS Central Science, 2016, 2, 802-811.	5.3	101
12	Interface control of electronic and optical properties in IV–VI and II–VI core/shell colloidal quantum dots: a review. Chemical Communications, 2017, 53, 1002-1024.	2.2	89
13	A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation. Angewandte Chemie, 2007, 119, 7169-7173.	1.6	82
14	Magnetically separable carbon nanocomposite catalysts for efficient nitroarene reduction and Suzuki reactions. Applied Catalysis A: General, 2014, 476, 133-139.	2.2	73
15	Heck and Sonogashira cross-coupling reactions using recyclable Pd–Fe3O4 heterodimeric nanocrystal catalysts. Tetrahedron Letters, 2013, 54, 5192-5196.	0.7	68
16	One-pot synthesis of magnetically recyclable mesoporous silica supported acid–base catalysts for tandem reactions. Chemical Communications, 2013, 49, 7821.	2.2	53
17	A simple synthesis of urchin-like Pt–Ni bimetallic nanostructures as enhanced electrocatalysts for the oxygen reduction reaction. Chemical Communications, 2016, 52, 597-600.	2.2	47
18	Fundamental Properties in Colloidal Quantum Dots. Advanced Materials, 2018, 30, e1801442.	11.1	37

Youngjin Jang

#	Article	IF	CITATIONS
19	Magnetically Recoverable Nanoflake-Shaped Iron Oxide/Pt Heterogeneous Catalysts and Their Excellent Catalytic Performance in the Hydrogenation Reaction. ACS Applied Materials & Interfaces, 2014, 6, 1887-1892.	4.0	33
20	Highly selective Wacker oxidation of terminal olefins using magnetically recyclable Pd–Fe3O4 heterodimer nanocrystals. RSC Advances, 2013, 3, 16296.	1.7	32
21	High performance infrared photodetectors up to 28 µm wavelength based on lead selenide colloidal quantum dots. Optical Materials Express, 2017, 7, 2326.	1.6	32
22	Cation Exchange Combined with Kirkendall Effect in the Preparation of SnTe/CdTe and CdTe/SnTe Core/Shell Nanocrystals. Journal of Physical Chemistry Letters, 2016, 7, 2602-2609.	2.1	31
23	Tuning Optical Activity of IV–VI Colloidal Quantum Dots in the Short-Wave Infrared (SWIR) Spectral Regime. Chemistry of Materials, 2016, 28, 6409-6416.	3.2	30
24	Synthesis of monodisperse chromium nanoparticles from the thermolysis of a Fischer carbene complex. Chemical Communications, 2005, , 86.	2.2	28
25	Influence of Interfacial Strain on Optical Properties of PbSe/PbS Colloidal Quantum Dots. Chemistry of Materials, 2016, 28, 9056-9063.	3.2	28
26	Selfâ€Assembled Dendritic Pt Nanostructure with Highâ€index Facets as Highly Active and Durable Electrocatalyst for Oxygen Reduction. ChemSusChem, 2017, 10, 3063-3068.	3.6	23
27	Magnetic Pd nanoparticles: effects of surface atoms. Journal of Physics Condensed Matter, 2008, 20, 295209.	0.7	21
28	Kirkendall Effect: Main Growth Mechanism for a New SnTe/PbTe/SnO ₂ Nano-Heterostructure. Chemistry of Materials, 2018, 30, 3141-3149.	3.2	17
29	Shape-Controlled Synthesis of Au Nanostructures Using EDTA Tetrasodium Salt and Their Photothermal Therapy Applications. Nanomaterials, 2018, 8, 252.	1.9	15
30	Towards Low-Toxic Colloidal Quantum Dots. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1443-1455.	1.4	6
31	Surface engineered gold nanoparticles through highly stable metal–surfactant complexes. Journal of Colloid and Interface Science, 2016, 464, 110-116.	5.0	5
32	Synthesis and catalytic applications of uniform-sized nanocrystals. Studies in Surface Science and Catalysis, 2006, 159, 47-54.	1.5	4
33	Recent Advances in Colloidal IV–VI Core/Shell Heterostructured Nanocrystals. Journal of Physical Chemistry C, 2018, 122, 13840-13847.	1.5	4
34	The effect of low temperature coating and annealing on structural and optical properties of CdSe/CdS core/shell QDs. Lithuanian Journal of Physics, 2016, 55, .	0.1	4
35	Simple fabrication of SWIR detectors based on wet deposition of carbon nanotubes and quantum dots. Sensors and Actuators A: Physical, 2019, 295, 469-473.	2.0	2
36	2.8µm infrared photodetectors based on PbSe colloidal quantum dot films. , 2018, , .		0